J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (9): 1628-1637.DOI: 10.1016/j.jmst.2018.04.015
• Orginal Article • Previous Articles Next Articles
L.H. Wu*(
), K. Nagatsuka, K. Nakata
Received:2017-11-30
Revised:2018-04-17
Accepted:2018-04-18
Online:2018-09-20
Published:2018-09-25
Contact:
Wu L.H.
L.H. Wu, K. Nagatsuka, K. Nakata. Achieving superior mechanical properties in friction lap joints of copper to carbon-fiber-reinforced plastic by tool offsetting[J]. J. Mater. Sci. Technol., 2018, 34(9): 1628-1637.
Fig 1. Schematic illustration of Cu and CFRTP joining during (a) normal FLJ with the tool at the center line of overlap zone, and (b) offset FLJ with tool offsetting 7 mm from center line toward the RS. Temperature measuring positions of A, C, R and E during normal FLJ, and O-A and O-R during offset FLJ are marked in (a) and (b), respectively.
Fig. 3. Typical macrostructures of the opposing fractured surfaces of normal joints at 800, 1500 and 2000 rpm. Points of A, C, R and E on the fracture surface at 1500 rpm correspond to the positions for temperature measurement in Fig. 1.
Fig. 4. Temperature measurements at different positions of normal FLJ CFRTP-Cu joint at 1500 rpm. Black, red, blue and green curves stand for the temperature on points C, A, R and E, respectively in Figs. 1a and Fig. 3.
Fig. 5. Typical macrostructures of the opposing fractured surfaces of offset joints at 800, 1500 and 2000 rpm. The points of O-A and O-R on the fracture surface at 1500 rpm were the positions used for temperature measurement.
Fig. 6. (a) Variation of TSF with rotation rate for the normal and offset FLJ joints, (b) estimated residual CFRTP area on Cu surface for the normal and offset FLJ joints, (c) temperature measurement at edge of tool on AS and RS (Points O-A and O-R in Figs. 1b and 5) for offset FLJ joint at 1500 rpm, and (d) the increasing efficiency of TSF and residual CFRTP area for offset FLJ joint.
Fig. 8. Typical microstructure of Cu/CFRTP joints at 2000 rpm with different plunge depth for normal joints of (a) (c) (e) and for offset joints of (b) (d) (f): (a) (b) 0.3 mm, (c) (d) 0.6 mm, with (c) joint at edge inserted, and (e) (f) 0.9 mm.
Fig. 9. Bubble comparison of joints for (a)(c) normal FLJ and (b)(d) offset FLJ: typical cross-section of FLJ Cu/CFRTP joint with (a) normal and (b) offset joints for 1500 rpm, fracture surfaces on the CFRTP side of (c) normal and (d) offset joints for 2000 rpm.
Fig. 10. Bubble size distribution comparison in (a)(c)(e) normal FLJ joints and (b)(d)(f) offset FLJ joints: bubble distribution observed from fracture surfaces on the CFRTP side for (a) normal FLJ and (b) offset FLJ at 600 rpm, (c) normal FLJ and (d) offset FLJ at 2000 rpm, with detailed bubble distribution inserted, and bubble distribution observed from cross-section of FLJ Cu/CFRTP joint for (e) normal FLJ and (f) offset FLJ at 1500 rpm.
| Rotation rate, rpm | Number | Total area, mm2 | Fraction, % | Average size, mm2 | Bubble Area on AS, mm2 | Bubble Area on RS, mm2 | |
|---|---|---|---|---|---|---|---|
| Normal FLJ | 600 | 839 | 18.97 | 34.80 | 0.0226 | 17.64 | 1.33 |
| 800 | 221 | 3.19 | 5.85 | 0.0144 | 3.08 | 0.11 | |
| 1000 | 531 | 1.90 | 3.48 | 0.0036 | 1.85 | 0.05 | |
| 1500 | 2800 | 3.19 | 5.84 | 0.0011 | 2.97 | 0.22 | |
| 2000 | 605 | 16.33 | 29.95 | 0.0270 | 13.93 | 2.40 | |
| Offset FLJ | 600 | 15 | 0.015 | 0.027 | 0.0010 | 0 | 0.015 |
| 2000 | 516 | 3.06 | 5.57 | 0.0059 | 1.77 | 1.29 |
Table 1 Bubble statistical results for the normal and offset joints measured from fractured CFRTP surface.
| Rotation rate, rpm | Number | Total area, mm2 | Fraction, % | Average size, mm2 | Bubble Area on AS, mm2 | Bubble Area on RS, mm2 | |
|---|---|---|---|---|---|---|---|
| Normal FLJ | 600 | 839 | 18.97 | 34.80 | 0.0226 | 17.64 | 1.33 |
| 800 | 221 | 3.19 | 5.85 | 0.0144 | 3.08 | 0.11 | |
| 1000 | 531 | 1.90 | 3.48 | 0.0036 | 1.85 | 0.05 | |
| 1500 | 2800 | 3.19 | 5.84 | 0.0011 | 2.97 | 0.22 | |
| 2000 | 605 | 16.33 | 29.95 | 0.0270 | 13.93 | 2.40 | |
| Offset FLJ | 600 | 15 | 0.015 | 0.027 | 0.0010 | 0 | 0.015 |
| 2000 | 516 | 3.06 | 5.57 | 0.0059 | 1.77 | 1.29 |
| Rotation rate, rpm | Normal FLJ | Offset FLJ | ||||
|---|---|---|---|---|---|---|
| Number | Total area (mm2) | Average size (mm2) | Number | Total area (mm2) | Average size (mm2) | |
| 600 | 46 | 0.23 | 0.0050 | 12 | 0.015 | 0.0012 |
| 800 | 4 | 0.06 | 0.0150 | 9 | 0.020 | 0.0022 |
| 1000 | 129 | 0.46 | 0.0036 | 37 | 0.190 | 0.0051 |
| 1500 | 601 | 0.80 | 0.0013 | 393 | 0.617 | 0.0016 |
| 2000 | 362 | 10.70 | 0.0296 | 69 | 0.150 | 0.0022 |
Table 2 Bubble statistical results measured from cross sections of normal and offset Cu/CFRTP joints.
| Rotation rate, rpm | Normal FLJ | Offset FLJ | ||||
|---|---|---|---|---|---|---|
| Number | Total area (mm2) | Average size (mm2) | Number | Total area (mm2) | Average size (mm2) | |
| 600 | 46 | 0.23 | 0.0050 | 12 | 0.015 | 0.0012 |
| 800 | 4 | 0.06 | 0.0150 | 9 | 0.020 | 0.0022 |
| 1000 | 129 | 0.46 | 0.0036 | 37 | 0.190 | 0.0051 |
| 1500 | 601 | 0.80 | 0.0013 | 393 | 0.617 | 0.0016 |
| 2000 | 362 | 10.70 | 0.0296 | 69 | 0.150 | 0.0022 |
Fig. 12. Typical microstructure at CFRTP side with (a) low hardness on edge of the AS, and (b) high hardness near tool center line for normal FLJ joint at 2000 rpm.
|
| [1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
| [2] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
| [3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
| [4] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
| [5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [6] | Yiru Mao, Yixiang Wu, Pengju Zhang, Yang Yu, Zhizhu He, Qian Wang. Nanocellulose-based reusable liquid metal printed electronics fabricated by evaporation-induced transfer printing [J]. J. Mater. Sci. Technol., 2021, 61(0): 132-137. |
| [7] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
| [8] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
| [9] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
| [10] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
| [11] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
| [12] | Hong Sun, Nan Deng, Jianqiang Li, Gang He, Jiangtao Li. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders [J]. J. Mater. Sci. Technol., 2021, 61(0): 93-99. |
| [13] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
| [14] | Xidong Zhang, Dong Yue, Ling Zhang, Shiwei Lin. Three-dimensional flexible Au nanoparticles-decorated TiO2 nanotube arrays for photoelectrochemical biosensing [J]. J. Mater. Sci. Technol., 2020, 56(0): 162-169. |
| [15] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
