Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 415-418    DOI:
Research Articles Current Issue | Archive | Adv Search |
Mechanism of Metal Transfer in DE-GMAW
Kehai Li1), Chuansong Wu2)†
1) Center for Manufacturing, University of Kentucky, Lexington, Kentucky, 40506, USA
2) Institute of Materials Joining, Shandong University, Ji'nan, 250061, China
Download:  HTML  PDF(367KB) 
Export:  BibTeX | EndNote (RIS)      

Modification of conventional gas metal arc welding (GMAW) process is of great potential to achieve high productivity with low cost and strong usability. Double-Electrode GMAW (DE-GMAW) is such a modified arc welding process which is formed by adding a bypass torch (gas tungsten arc welding torch) to a conventional GMAW system. The mechanism of metal transfer in DE-GMAW was proposed and verified in this paper. Experiments show that the critical current is decreased so that spray transfer can be obtained at a lower current level in DE-GMAW. Analysis of this significant change in metal transfer phenomena is conducted, and explanation is given out. It is found that the bypass arc in DE-GMAW lifts the anode point on the droplets such that the electromagnetic force becomes larger and squeezes the droplets so that spray transfer can take
place under welding current lower than that in conventional GMAW.

Key words:  Metal transfer      Double-electrode GMAW      Mechanism     
Received:  25 February 2008     

the National Science Foundation of USA under grant DMI-0355324
the National Natural Science Foundation of China under grant No. 50675119

Corresponding Authors:  Wu Chuansong     E-mail:

Cite this article: 

Kehai Li,Chuansong Wu. Mechanism of Metal Transfer in DE-GMAW. J Mater Sci Technol, 2009, 25(03): 415-418.

URL:     OR

[1 ] J.H. Waszink and G.P.M.V.d. Heuvel: Welding Journal, 1982, 61, 269s.
[2 ] D. Harwig and R. Gordon: Proc. 6th Int. Conf. Trends inWelding Research, ASM International, 2003, 995.
[3 ] R. Olsson: Welding Review International, 1995, 14, 128.
[4 ] J.E. Talkington: Welding Engineering, 1998, The Ohio State University: Columbus, Ohio.
[5 ] K.X. Chen, H.Q. Li and C.X. Li: Transactions of the China Welding Institution, 2004, 25, 124.
[6 ] H. Cary and W. Chaisson: Variable Polarity Plasma Arc Welding. 1986. Metairie, LA, USA: Aluminum Assoc, Washington, DC, USA.
[7 ] T. Ueyama: Science and Technology of Welding and Joining, 2005, 10, 750.
[8 ] S. Tsushima and M. Kitamura: Welding Research Abroad, 1996, 42(2), 26.
[9 ] K.H. Li and Y.M. Zhang: Journal of Manufacturing Science and Engineering of ASME, 2007, 129(6), 1.
[10] C.S.Wu, M.X. Zhang, K.H, Li and Y.M. Zhang: Computational Materials Science, 2007, 39(2), 416.
[11] C.S. Wu, G.X. Xu and Y.M. Zhang: Proc. 7th Int. Conf. Trends in Welding Research, ASM International, 2005, 216.
[12] K.H. Li, J.S. Chen, and Y.M. Zhang: Welding Journal, 2007, 86(8), 231.
[13] K.H. Li and Y.M. Zhang: Welding Journal, 2008, 87(2), 44s.
[14] K.H. Li and Y.M. Zhang: Welding Journal, 2008, 87(1), 11s.
[15] K.H. Li and Y.M. Zhang: Welding Journal, 2008, 87(3), 57s.
[16] C.S. Wu, M.A. Chen and S.K. Li: Computational Materials Science, 2004, 31, 147.
[17] M.A. Chen, C.S.Wu, S.K. Li and Y.M. Zhang: Science and Technology ofWelding & Joining, 2007, 12(1), 10.
[18] J.F. Lancaster: The Physics of Welding, Pergamon Press, New York, 1986, 211.
[19] Y.S. Kim and T.W. Eagar: Welding Journal, 1993, 72, 269s.
[20] C.E. Jackson: Welding Journal, 1960. 39(5), 177s.
[21] J.C. Amson: British Journal of Applied Physics, 1965, 16(8), 1169.

[1] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[2] H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy[J]. 材料科学与技术, 2020, 42(0): 190-202.
[3] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[4] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[5] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[6] Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy[J]. 材料科学与技术, 2020, 45(0): 133-145.
[7] Yuan Zhang, Guoqi Tan, Da Jiao, Jian Zhang, Shaogang Wang, Feng Liu, Zengqian Liu, Longchao Zhuo, Zhefeng Zhang, Sylvain Deville, Robert O. Ritchie. Ice-templated porous tungsten and tungsten carbide inspired by natural wood[J]. 材料科学与技术, 2020, 45(0): 187-197.
[8] Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures[J]. 材料科学与技术, 2020, 38(0): 135-147.
[9] Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel[J]. 材料科学与技术, 2020, 36(0): 65-69.
[10] Zhi Dong, Nan Liu, Weiqiang Hu, Zongqing Ma, Chong Li, Chenxi Liu, Qianying Guo, Yongchang Liu. Controlled synthesis of high-quality W-Y2O3 composite powder precursor by ascertaining the synthesis mechanism behind the wet chemical method[J]. 材料科学与技术, 2020, 36(0): 118-127.
[11] Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models[J]. 材料科学与技术, 2020, 36(0): 176-189.
[12] Jiajie Li, Xiangyun Huang, Liangliang Zeng, Bo Ouyang, Xiaoqiang Yu, Munan Yang, Bin Yang, Rawat Rajdeep Singh, Zhenchen Zhong. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films[J]. 材料科学与技术, 2020, 41(0): 81-87.
[13] Zhongwei Wang, Yu Yan, Yang Wang, Yanjing Su, Lijie Qiao. Lifecycle of cobalt-based alloy for artificial joints: From bulk material to nanoparticles and ions due to bio-tribocorrosion[J]. 材料科学与技术, 2020, 46(0): 98-106.
[14] Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature[J]. 材料科学与技术, 2019, 35(9): 1917-1924.
[15] Dan Jia, Wenru Sun, Dongsheng Xu, Fang Liu. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation[J]. 材料科学与技术, 2019, 35(9): 1851-1859.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.