J. Mater. Sci. Technol. ›› 2025, Vol. 218: 170-179.DOI: 10.1016/j.jmst.2024.07.051
• Research Article • Previous Articles Next Articles
Jiawei Jia,b, Song Yana,b, Zheng Zhoua,b, Yaxin Gua,b, Chaoze Liua,b, Shaobo Yanga,b, Dong Wanga,b, Yanming Xuea,b,*, Chengchun Tanga,b,*
Received:
2024-05-17
Revised:
2024-07-19
Accepted:
2024-07-24
Published:
2025-05-20
Online:
2024-09-07
Contact:
*E-mail addresses: ym.xue@hebut.edu.cn (Y. Xue), tangcc@hebut.edu.cn (C. Tang)
Jiawei Ji, Song Yan, Zheng Zhou, Yaxin Gu, Chaoze Liu, Shaobo Yang, Dong Wang, Yanming Xue, Chengchun Tang. High-surface area active boron nitride nanofiber rich in oxygen vacancies enhanced the interface stability of all-solid-state composite electrolytes[J]. J. Mater. Sci. Technol., 2025, 218: 170-179.
[1] F. Chen, X. Wang, M. Armand, M. Forsyth, Nat. Mater. 21 (2022) 1175-1182. [2] B. Yuan, B. Zhao, Q. Wang, Y. Bai, Z. Cheng, Z. Cong, Y. Lu, F. Ji, F. Shen, P.W. Wang, X. Han, Energy Storage Mater. 47 (2022) 288-296. [3] V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J.R. Nair, Energy Environ. Sci. 14 (2014) 2708-2788. [4] Z. Cheng, T. Liu, B. Zhao, F. Shen, H. Jin, X. Han, J. Energy Storage Mater. 34 (2021) 388-416. [5] W. Yu, N. Deng, D. Shi, L. Gao, B. Cheng, G. Li, W. Kang, ACS Nano 17 (2023) 22872-22884. [6] P. Pan, M. Zhang, Z. Cheng, L. Jiang, J. Mao, C. Ni, Q. Chen, Y. Zeng, Y. Hu, K. Fu, Energy Storage Mater. 47 (2022) 279-287. [7] W. Jia, J. Yang, L. Shen, Q. Guo, H. He, X. Yao, ACS Appl. Energy Mater. 4 (2021) 4129-4137. [8] W. Li, S. Zhang, B. Wang, S. Gu, J. Wang, C. Chen, Z. Wen, ACS Appl. Mater. Interfaces 10 (2018) 23874-23882. [9] C. Liu, B. Wu, T. Liu, Y. Zhang, J. Cui, L. Huang, G. Tan, L. Zhang, Y. Su, F. Wu, J. Energy Chem. 89 (2024) 449-470. [10] M. Liu, S. Zhang, E.R.H. van Eck, C.Wang, S. Ganapathy, M. Wagemaker, Nat. Nanotechnol. 17 (2022) 959-967. [11] Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Nat. Rev. Mater. 5 (2020) 229-252. [12] X. Zhou, B. Zhang, F. Huang, F. Li, Z. Ma, J. Liu, Nano Energy 108 (2023) 108221. [13] Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, Adv. Mater. 33 (2021) 2100353. [14] Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu, Z. Chen, Chem. Soc. Rev. 49 (2020) 8790-8839. [15] J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu, Q. Yang, Y. Zhao, N. Deng, B. Cheng, W. Kang, Energy Storage Mater. 53 (2022) 192-203. [16] F. Core, G.B. Appetecchi, L. Persi, B. Scrosati, Nature 394 (1998) 456-458. [17] O. Sheng, H. Hu, T. Liu, Z. Ju, G. Lu, Y. Liu, J. Nai, Y. Wang, W. Zhang, X. Tao, Adv. Funct. Mater. 32 (2022) 2111026. [18] X. Li, S. Liu, J. Shi, M. Huang, Z. Shi, H. Wang, Z. Yan, Chem. Eng. J. 478 (2023) 143795. [19] J. Ji, H. Duan, Z. Zhou, C. Liu, D. Wang, S. Yan, S. Yang, W. Bai, Y. Xue, C. Tang, J. Mater. Chem. A 11 (2023) 11298-11309. [20] X. Yin, L. Wang, Y. Kim, N. Ding, J. Kong, D. Safanama, Y. Zheng, J. Xu, D.V.M. Repaka, K. Hippalgaonkar, S.W. Lee, S. Adams, G.W. Zheng, Adv. Sci. 7 (2020) 2001303. [21] B. Liang, S. Tang, Q. Jiang, C. Chen, X. Chen, S. Li, X. Yan, Electrochim. Acta 169 (2015) 334-341. [22] P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu, W. Xu, Q. Cheng, C. Jayyosi, Z. Li, J. Zhu, K.M. Myers, X. Chen, Y. Yang, Nano Lett. 18 (2018) 6113-6120. [23] Q. Zhang, S. Wang, Y. Liu, M. Wang, R. Chen, Z. Zhu, X. Qiu, S. Xu, T. Wei, Nano Energy 11 (2023) 2201438. [24] Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng, H. Zou, TY. Chen, W.Kuang, K. Ding, L. Chen, Y. Lan, Y. Cai, Q. Zheng, Energy Storage Mater. 47 (2022) 262-270. [25] L. Luo, Z. Sun, Y. You, X. Han, C. Lan, S. Pei, P. Su, Z. Zhang, Y. Li, S. Xu, S. Guo, D. Lin, G. Lin, C. Li, W. Huang, S. Wu, M-S. Wang, S. Chen, ACS Nano 18 (2024) 2917-2972. [26] X. Zhang, J. Wang, D. Hu, W. Du, C. Hou, H. Jiang, Y. Wei, X. Liu, F. Jiang, J. Sun, H. Yuan, X. Huang, Energy Storage Mater. 65 (2024) 103089. [27] J. Zhang, Y. Zeng, Q. Li, Z. Tang, D. Sun, D. Huang, L. Zhao, Y. Tang, H. Wang, Energy Storage Mater. 54 (2023) 440-449. [28] T. Duan, H. Cheng, Y. Liu, Q. Sun, W. Nie, X. Lu, P. Dong, A-K. Song, Energy Storage Mater. 65 (2024) 103091. [29] Q. Guo, F. Xu, L. Shen, S. Deng, Z. Wang, M. Li, X. Yao, Energy Mater. Adv. 2022 (2022) 9753506. [30] Q. Guo, F. Xu, L. Shen, Z. Wang, J. Wang, H. He, X. Yao, J. Power Sources 498 (2021) 229934. [31] G.K. Silori, S. Thoka, K-C. Ho, ACS Appl. Mater. Interfaces 15 (2023) 25791-25805. [32] H. Chen, D. Adekoya, L. Hencz, J. Ma, Su. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 10 (2020) 2000049. [33] S. Wu, C. Ji, F. Tang, L. Zhang, K. Fang, F. Huang, Q. Wei, Energy Storage Mater. 67 (2024) 103308. [34] N. Deng, S. Luo, L. Zhang, Y. Feng, Y. Liu, W. Kang, B. Cheng, J. Energy Storage 75 (2024) 109578. [35] J. Ji, C. Liu, Z. Zhou, S. Yan, S. Yang, X. Li, Z. Wang, Y. Xue, C. Tang, ACS Appl. Nano Mater 7 (2024) 13230. [36] W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, ACS Nano 10 (2016) 11407-11413. [37] B. Luo, W. Wang, Q. Wang, W. Ji, G. Yu, Z. Liu, Z. Zhao, X. Wang, S. Wang, J. Zhang, Chem. Eng. J. 460 (2023) 141329. [38] B. Gao, X. Feng, Y. Zhang, Z. Zhou, J. Wei, R. Qiao, F. Bi, N. Liu, X. Zhang, Chem. Eng. J. 484 (2024) 149604. [39] T. Rasheed, M.T. Anwar, Coordin. Chem. Rev. 480 (2023) 215011. [40] Y. Jiang, Y. Hu, B. Luan, L. Wang, R. Krishna, H. Ni, X. Hu, Y. Zhang, Nat. Com-mun. 14 (2023) 401. [41] Y. Zhang, L. Zhang, P. Guo, C. Zhang, X. Ren, Z. Jiang, J. Song, C. Shi, Nano Res. 17 (2024) 2663-2670. [42] J. Kriegler, E. Jaimez-Farnham, M. Scheller, E. Dashjav, F. Konwitschny, L. Wach, L. Hille, F. Tietz, M.F. Zaeh, Energy Storage Mater. 57 (2023) 607-617. [43] Y. Huang, Y. Cheng, H. Zhang, L. Mai, L. Xu, Chem. Eng. J. 470 (2023) 144120. [44] L. Xu, J. Li, H. Shuai, Z. Luo, B. Wang, S. Fang, G. Zou, H. Hou, H. Peng, X. Ji, J. Energy Chem. 67 (2022) 524-548. [45] X. Li, T. Cao, M. Zhang, H. Qiu, Y. Huang, S. Qu, L. Liang, T. Song, Int. J. Appl. Ceram. Tecchnol. 17 (2020) 941-948. [46] E.A. Turhan, S. Akbada, A. Tezcaner, Z. Evis, Bio. Adv. 148 (2023) 213382. [47] Q. Song, Y. Zhang, J. Liang, S. Liu, J. Zhu, X. Yan, Chin. Chem. Lett. 35 (2024) 108797. [48] Q. Song, J. Liang, Y. Fang, Z. Guo, Z. Du, L. Zhang, Z. Liu, Y. Huang, J. Lin, C. Tang, Chem. Eng. J. 394 (2020) 124985. [49] S. Yan, C. Cao, S. Yang, J. Ji, Z. Zhou, Y. Gu, C. Liu, R. Zhang, Y. Xue, C. Tang, Micropor. Mesopor. Mater. 366 (2024) 112951. [50] V. Salles, S. Bernard, J. Li, A. Brioude, S. Chehaidi, S. Foucaude, P. Miele, Chem. Mater. 21 (2009) 2920-2929. [51] F. Xiao, S. Naficy, G. Casillas, M.H. Khan, T. Katkus, L. Jiang, H. Liu, H. Li, Z. Huang, Adv. Mater. 27 (2015) 7196-7203. [52] T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun’ko, J. Coleman, J. Am. Chem.Soc. 134 (2012) 18758-18771. [53] R. Evans, P. Tarazona, Phys. Rev. Lett. 52 (1984) 557-560. [54] M. Liu, S. Zhang, E.R.H. Van Eck, C.Wang, S. Ganapathy, M. Wagemaker, Nat. Nanotechnol. 17 (2022) 959-967. [55] J. He, H. Chen, D. Wang, Q. Zhang, G. Zhong, Z. Peng, J. Phys. Chem.Lett. 13 (2022) 1500-1505. [56] K. Fu, J. Yang, C. Cao, Q. Zhai, W. Qiao, J. Qiao, H. Gao, Z. Zhou, J. Ji, M. Li, C. Liu, B. Wang, W. Bai, H. Duan, Y. Xue, C. Tang, ACS Appl. Mater. Interfaces 13 (2021) 2853-2867. [57] N. Cao, X. Zhao, M. Gao, Z. Li, X. Ding, C. Li, K. Liu, X. Du, W. Li, J. Feng, Y. Ren, Sep. Purif. Technol. 275 (2021) 119236. [58] R. Paste. C.Hanmandlu, P-Y. Su, C-H. Hou, H-A. Chen, C-W. Pao, J-J. Shyue, K.H. Chen, H.L. Wu, H.C. Lin, C.W. Chu, Chem. Eng. J. 452 (2023) 139088. [59] L. Gao, N. Wu, N. Deng, Z. Li, J. Li, Y. Che, B. Cheng, W. Kang, R. Liu, Y. Li, Energy Environ. Mater. 6 (2023) e12272. [60] K.M. Diederichsen, H.G. Buss, B.D. McCloskey, Macromolecules 50 (2017) 3831-3840. [61] B. Sun, J. Mindemark, E.V. Morozov, L.T. Costa, M. Bergman, P. Johans-son, Y.Fang, I. Furo, D. Brandell, Phys. Chem. Chem. Phys. 18 (2016) 9504-9513. [62] Z. Xiong, Z. Wang, W. Zhou, Q. Liu, J-F. Wu, T-H. Liu, C. Xu, J. Liu, Energy Stor-age Mater 57 (2023) 171-179. [63] O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang, Y. Gan, J. Zhang, Y. Xia, C. Liang, W. Zhang, X. Tao, Nano Lett. 18 (2018) 3104-3112. [64] X. Zheng, D. Xu, N. Fu, Z. Yang, J. Energy Chem. 81 (2023) 603-612. [65] J. Sax, J. Ottino, Polym. Eng. Sci. 23 (1983) 165-176. [66] M. Lei, X. Wu, Y. Liu, K. Chen, J. Hu, C. Li, Nano Res. 16 (2023) 8469-8477. [67] R. Li, X. Zhou, H. Shen, M. Yang, C. Li, ACS Nano 13 (2019) 10049-10061. [68] J. Ji, Z. Zhou, C. Liu, S. Yan, S. Yang, R. Zhang, Y. Xue, C. Tang, ACS Appl. Nano Mater. 6 (2023) 20120-20128 . |
[1] | Jintang Zhou, Kexin Zou, Jiaqi Tao, Jun Liu, Yijie Liu, Lvtong Duan, Zhenyu Cheng, Borui Zha, Zhengjun Yao, Guiyu Peng, Xuewei Tao, Hexia Huang, Yao Ma, Peijiang Liu. Using multi-scale interaction mechanisms in yolk-shell structured C/Co composite materials for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2025, 215(0): 36-44. |
[2] | Zehua Zhou, Di Lan, Junwen Ren, Yuhang Cheng, Zirui Jia, Guanglei Wu, Pengfei Yin. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2024, 185(0): 165-173. |
[3] | Lei Yang, Tingkai Zhao, Abdul Jalil, Huijun Luo, Tao Jiang, Yuan Shu, Yazhou Yin, Weiyu Jia. Modulating oxygen vacancy concentration for selective growth of semiconducting single-walled carbon nanotubes with narrow diameters [J]. J. Mater. Sci. Technol., 2024, 174(0): 44-54. |
[4] | Jiani Qin, Yanli Dong, Xiaojuan Lai, Bo Su, Bao Pan, Chuanyi Wang, Sibo Wang. Oxygen vacancy-rich CoMoO4/Carbon nitride S-scheme heterojunction for boosted photocatalytic H2 production: Microstructure regulation and charge transfer mechanism [J]. J. Mater. Sci. Technol., 2024, 198(0): 176-185. |
[5] | Jun Wang, Xiaoyu Chong, Liang Lv, Yuncheng Wang, Xiaolan Ji, Haitao Yun, Jing Feng. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties [J]. J. Mater. Sci. Technol., 2023, 157(0): 98-106. |
[6] | L. Lu Xie, T. Fei Shi, J. Chao Lin, X. Kai Zhang, X. Kang Zhong, K. Ke Liu, B. Ke Dong, Cheng Yang, X. Lian Wang, T. Jiao Xiong, W. Sheng Yan, J. Ping Xu, H. Can Chen, Wen Yin, Ming Li, Peng Tong, W. Hai Song, Y. Ping Sun. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate [J]. J. Mater. Sci. Technol., 2023, 146(0): 80-85. |
[7] | Yushu Tang, Pengwei Tan, Yuanyuan Luo, Zheng Zhang, Liyang Luo, Guotao Duan. Hf-doped ZnO transistor with high bias stability and high field-effect mobility by modulation of oxygen vacancies and interfaces [J]. J. Mater. Sci. Technol., 2023, 163(0): 59-68. |
[8] | Jing Xu, Ruiwen Shu, Zongli Wan, Jianjun Shi. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2023, 132(0): 193-200. |
[9] | Lingxia Li, Yuting Li, Jianli Qiao, Mingkun Du. Developing high-Q × f value MgNb2-xTaxO6(0≤x≤0.8) columbite ceramics and clarifying the impact mechanism of dielectric loss: Crystal structure, Raman vibrations, microstructure, lattice defects, chemical bond characteristics, structural parameters, and microwave dielectric properties in-depth studies [J]. J. Mater. Sci. Technol., 2023, 146(0): 186-199. |
[10] | Huinan Zhao, Xinyi Guan, Feng Zhang, Yajing Huang, Dehua Xia, Lingling Hu, Xiaoyuan Ji, Ran Yin, Chun He. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water [J]. J. Mater. Sci. Technol., 2022, 100(0): 110-119. |
[11] | Yang Zhao, Yameng Zhu, Jinpeng Zhu, Hailong Wang, Zhuang Ma, Lihong Gao, Yanbo Liu, Kaijun Yang, Yongchun Shu, Jilin He. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 172-182. |
[12] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[13] | Jie Xiong, Hong-Yan Zeng, Sheng Xu, Jin-Feng Peng, Fang-Yuan Liu, Li-Hui Wang. Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances [J]. J. Mater. Sci. Technol., 2022, 118(0): 181-189. |
[14] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[15] | Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. J. Mater. Sci. Technol., 2022, 114(0): 240-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||