J. Mater. Sci. Technol. ›› 2023, Vol. 146: 80-85.DOI: 10.1016/j.jmst.2022.10.054
• Research Article • Previous Articles Next Articles
L. Lu Xiea,b,1, T. Fei Shia,1, J. Chao Lina,*, X. Kai Zhangd, X. Kang Zhonga, K. Ke Liua,b, B. Ke Donga,b, Cheng Yange, X. Lian Wanga,b, T. Jiao Xionga,b, W. Sheng Yanb,f, J. Ping Xud, H. Can Chend, Wen Yind, Ming Lia, Peng Tonga,b,**, W. Hai Songa, Y. Ping Sunc,a
Received:
2022-09-22
Revised:
2022-09-22
Accepted:
2022-09-22
Published:
2023-05-20
Online:
2023-05-15
Contact:
* E-mail addresses: jclin@issp.ac.cn (J.C. Lin); ** Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. E-mail addresses: tongpeng@issp.ac.cn (P. Tong)
About author:
1 These authors contributed equally to this work.
L. Lu Xie, T. Fei Shi, J. Chao Lin, X. Kai Zhang, X. Kang Zhong, K. Ke Liu, B. Ke Dong, Cheng Yang, X. Lian Wang, T. Jiao Xiong, W. Sheng Yan, J. Ping Xu, H. Can Chen, Wen Yin, Ming Li, Peng Tong, W. Hai Song, Y. Ping Sun. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate[J]. J. Mater. Sci. Technol., 2023, 146: 80-85.
[1] Y. Fukai, N. Ōkuma, Phys.Rev. Lett. 73(1994) 1640. [2] P. Niu, G. Liu, H.M. Cheng, J. Phys. Chem. C 116 (2012) 11013-11018. [3] A. Sarkar, G.G. Khan, Nanoscale 11 (2019) 3414-34 4 4. [4] N.A. Richter, S. Sicolo, S.V. Levchenko, J. Sauer, M. Scheffler, Phys. Rev. Lett. 111(2013) 045502. [5] Y.Y. Yao, C.H. Song, P. Bao, D. Su, X.M. Lu, J.S. Zhu, Y.N. Wang, J. Appl. Phys. 95(2004) 3126-3130. [6] Z.Z. Wang, J. Clayhold, N.P. Ong, J.M. Tarascon, L.H. Greene, W.R. McKinnon, G.W. Hull, Phys. Rev. B 36 (1987) 7222-7225. [7] Y. Shimakawa, Y. Kubo, T. Manako, H. Igarashi, Phys. Rev. B 40 (1989) 11400. [8] P. Majewski, Adv. Mater. 6(1994) 460-469. [9] C.L. Jia, M. Lentzen, K. Urban, Science 299 (2003) 870-873. [10] M.H. Fang, H.D. Wang, C.H. Dong, Z.J. Li, C.M. Feng, J. Chen, H.Q. Yuan, EPL 94 (2011) 27009. [11] G. Campi, A. Bianconi, N. Poccia, G. Bianconi, L. Barba, G. Arrighetti, D. Innocenti, J. Karpinski, N.D. Zhigadlo, S.M. Kazakov, M. Burghammer, M.V. Zimmermann, M. Sprung, A. Ricci, Nature 525 (2015) 359-362. [12] X.W. Liu, K.B. Zhou, L. Wang, B.Y. Wang, Y.D. Li, J. Am. Chem.Soc. 131(2009) 3140-3141. [13] H. Li, J. Shang, Z.H. Ai, L.Z. Zhang, J. Am. Chem.Soc. 137(2015) 6393-6399. [14] H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman, A.H. Fragapane, J.H. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Norskov, X.L. Zheng, Nat. Mater. 15(2016) 48-53. [15] L. Xu, Q.Q. Jiang, Z.H. Xiao, X.Y. Li, J. Huo, S.Y. Wang, L.M. Dai, Angew. Chem.-Int. Edit. 55(2016) 5277-5281. [16] Y. Pei, D.T. Morelli, Appl. Phys. Lett. 94(2009) 122112. [17] L.P. Hu, T.J. Zhu, X.H. Liu, X.B. Zhao, Adv. Funct. Mater. 24(2014) 5211-5218. [18] W. Li, S.Q. Lin, X.Y. Zhang, Z.W. Chen, X.F. Xu, Y.Z. Pei, Chem. Mater. 28(2016) 6227-6232. [19] K.Y. Xia, Y.T. Liu, S. Anand, G.J. Snyder, J.Z. Xin, J.J. Yu, X.B. Zhao, T.J. Zhu, Adv. Funct. Mater. 28(2018) 1705845. [20] X.Y. Zhang, J. Li, X. Wang, Z.W. Chen, J.J. Mao, Y. Chen, Y.Z. Pei, J. Am. Chem.Soc. 140(2018) 15883-15888. [21] J.F. Scott, M. Dawber, Appl. Phys. Lett. 76(2000) 3801-3803. [22] C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62 (2000) 228-236. [23] M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, N. Mathews, Adv. Mater. 26(2014) 7122-7127. [24] J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 8(2015) 2118-2127. [25] J. Dugdale, D. MacDonald, Phys. Rev. 89(1953) 832. [26] G.D. Barrera, J.A.O. Bruno, T. Barron, N. Allan, J. Phys.-Condens. Matter 17 (2005) R217. [27] F. Shen, P. Lu, S.J.O’Shea, K.H. Lee, T.Y. Ng, Sens. Actuators A-Phys. 95(2001) 17-23. [28] L.S. Sinev, V.T. Ryabov, J. Micro-Nanolithogr. MEMS MOEMS 16 (2017) 015003. [29] T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Science 272 (1996) 90-92. [30] E.J. Liang, Q. Sun, H.L. Yuan, J.Q. Wang, G.J. Zeng, Q.L. Gao, Front. Phys. 16(2021) 53302. [31] N.K. Shi, Y.Z. Song, X.R. Xing, J. Chen, Coord. Chem. Rev. 449(2021) 214204. [32] Y.Z. Song, N.K. Shi, S.Q. Deng, X.R. Xing, J. Chen, Prog. Mater. Sci. 121(2021) 100835. [33] B. Nienhuis, A. Berker, E.K. Riedel, M. Schick, Phys. Rev. Lett. 43(1979) 737. [34] P. Timonin, J. Exp. Theor.Phys. 99(2004) 1044-1053. [35] N.K. Shi, A. Sanson, Q.L. Gao, Q. Sun, Y. Ren, Q.Z. Huang, D.O. de Souza, X.R. Xing, J. Chen, J. Am. Chem. Soc. 142(2020) 3088-3093. [36] A. Hassan, Y. Savaria, M. Sawan, IEEE Trans. very large Scale Integr.(VLSI) Syst. 26(2018) 2085-2098. [37] A.L. Goodwin, C.J. Kepert, Phys. Rev. B 71 (2005) 140301. [38] Q.L. Gao, J.Q. Wang, A. Sanson, Q. Sun, E.J. Liang, X.R. Xing, J. Chen, J. Am. Chem.Soc. 142(2020) 6935-6939. [39] S.G. Duyker, V.K. Peterson, G.J. Kearley, A.J.Ramirez-Cuesta, C.J. Kepert, Angew. Chem.-Int. Edit. 52(2013) 5266-5270. [40] A.E. Phillips, A.L. Goodwin, G.J. Halder, P.D. Southon, C.J. Kepert, Angew. Chem.-Int. Edit. 120(2008) 1418-1421. [41] B.R. Hester, A.P. Wilkinson, Inorg. Chem. 57(2018) 11275-11281. [42] J.C. Hancock, K.W. Chapman, G.J. Halder, C.R. Morelock, B.S. Karlan, L.C. Gallington, A. Bongiorno, C. Han, S. Zhou, A.P. Wilkinson, Chem. Mater. 27(2015) 3912-3918. [43] C. Yang, P. Tong, J.C. Lin, X.G. Guo, K. Zhang, M. Wang, Y. Wu, S. Lin, P.C. Huang, W. Xu, W.H. Song, Y.P. Sun, Appl. Phys. Lett. 109(2016) 023110. [44] N. Lock, Y. Wu, M. Christensen, L.J. Cameron, V.K. Peterson, A.J. Bridgeman, C.J. Kepert, B.B. Iversen, J. Phys. Chem. C 114 (2010) 16181-16186. [45] N. Katayama, A.K. Otsuka, M. Mitamura, Y. Yokoyama, Y. Okamoto, K. Takenaka, Appl. Phys. Lett. 113(2018) 181902. [46] Y. Yamamura, N. Nakajima, T. Tsuji, Phys. Rev. B 64 (2001) 184109. [47] C. Lind, A.P. Wilkinson, Z.B. Hu, S. Short, J.D. Jorgensen, Chem. Mater. 10(1998) 2335-2337. [48] J.S.O.Evans, T.A. Mary, T. Vogt, M.A. Subramanian, A.W. Sleight, Chem. Mater. 8(1996) 2809-2823. [49] C. Lind, Georgia Institute of Technology, 2001. [50] S. Sumithra, A. Umarji, Solid State Sci. 8(2006) 1453-1458. [51] B. Marinkovic, P. Jardim, R. De Avillez, F. Rizzo, Solid State Sci. 7(2005) 1377-1383. [52] W.G. Cao, Q. Li, K. Lin, Z.N. Liu, J.X. Deng, J. Chen, X.R. Xing, RSC Adv. 6(2016) 96275-96280. [53] S. Sumithra, A. Tyagi, A. Umarji, Mater. Sci. Eng. B 116 (2005) 14-18. [54] J. Evans, T. Mary, A. Sleight, J. Solid State Chem. 137(1998) 148-160. [55] P.M. Forster, A.W. Sleight, Int. J. Inorg. Mater. 1(1999) 123-127. [56] M.D. Zhang, Y.C. Mao, J. Guo, W.J. Zhou, M.J. Chao, N. Zhang, M.J. Yang, X.H. Kong, X.S. Kong, E.J. Liang, RSC Adv. 7(2017) 3934-3940. [57] L.F. Li, P. Tong, Y.M. Zou, W. Tong, W.B. Jiang, Y. Jiang, X.K. Zhang, J.C. Lin, M. Wang, C. Yang, X.B. Zhu, W.H. Song, Y.P. Sun, Acta Mater. 161(2018) 258-265. [58] B. Li, X.H. Luo, H. Wang, W.J. Ren, S. Yano, C.W. Wang, J. Gardner, K.D. Liss, P. Miao, S.H. Lee, Phys. Rev. B 93 (2016) 224405. [59] R.J. Huang, Y.Y. Liu, W. Fan, J. Tan, F.R. Xiao, L.H. Qian, L.F. Li, J. Am. Chem.Soc. 135(2013) 11469-11472. [60] J.C. Lin, P. Tong, X.J. Zhou, H. Lin, Y.W. Ding, Y.X. Bai, L. Chen, X.G. Guo, C. Yang,B. Song, Y. Wu, S. Lin, W.H. Song, Y.P. Sun, Appl. Phys. Lett. 107(2015) 131902. [61] K. Takenaka, H. Takagi, Appl. Phys. Lett. 87(2005) 261902. [62] G. Pereira, A. Lachenwitzer, D. Munoz-Paniagua, M. Kasrai, P.R. Norton, M. Abrecht, P. Gilbert, Tribol. Lett. 23(2006) 109-119. [63] S.H. Wan, A.K. Tieu, Q. Zhu, H.T. Zhu, S.G. Cui, D.R. Mitchell, C. Kong, B. Cowie, J.A. Denman, R. Liu, Sci. Rep. 6(2016) 28214. [64] A. Karaphun, P. Chirawatkul, S. Maensiri, E. Swatsitang, J. Sol-Gel Sci. Technol. 88(2018) 407-421. [65] J.P. Xu, Y.G. Xia, Z.D. Li, H.C. Chen, X.L. Wang, Z.Z. Sun, W. Yin, Nucl. Instrum. Methods Phys. Res. B1013 (2021) 165642. [66] B.H. Toby, R.B.Von Dreele, J.Appl. Crystallogr. 46(2013) 544-549. |
[1] | Liqi Li, Wenjian Shen, Chenquan Yang, Yuxi Dou, Xuehao Zhu, Yao Dong, Juan Zhao, Junyan Xiao, Fuzhi Huang, Yi-Bing Cheng, Jie Zhong. In-situ monitored chemical bath deposition of planar NiOx layer for inverted perovskite solar cell with enhanced efficiency [J]. J. Mater. Sci. Technol., 2023, 133(0): 145-153. |
[2] | Fan Wang, Mengyao Wang, Qingsong He, Xuehong Wang, Ping Sun, Yinjun Ji, Yunfei Niu, Fengqian Li, Jie Wei. Black tantalic oxide submicro-particles coating on PEEK fibers woven into fabrics as artificial ligaments with photothermal antibacterial effect and osteogenic activity for promoting ligament-bone healing [J]. J. Mater. Sci. Technol., 2023, 133(0): 195-208. |
[3] | Xue Li, Xue Zhao, Jiapei Lv, Xiuxiu Jia, Shuxing Zhou, Yimin Huang, Fengqin Chang, Hucai Zhang, Guangzhi Hu. Self-supported porous copper oxide nanosheet arrays for efficient and selective electrochemical conversion of nitrate ions to nitrogen gas [J]. J. Mater. Sci. Technol., 2023, 137(0): 104-111. |
[4] | Lingwei Li, Mi Yan. Recent progress in the development of RE2TMTM'O6 double perovskite oxides for cryogenic magnetic refrigeration [J]. J. Mater. Sci. Technol., 2023, 136(0): 1-12. |
[5] | Zhenzhu Wang, Feng Yang, Jiangfeng Ni, Liang Li. Simultaneously tailoring material structure and surface for robust sodium storage: A case study of TiO2 [J]. J. Mater. Sci. Technol., 2023, 136(0): 91-96. |
[6] | Shaofeng Zhou, Jin Yan, Jialin Chen, Huimin Yan, Yin Zhang, Jin Huang, Guizhe Zhao, Qiaoxin Zhang, Yaqing Liu. Polydopamine/polyethyleneimine co-crosslinked graphene oxide for the enhanced tribological performance of epoxy resin coatings [J]. J. Mater. Sci. Technol., 2023, 136(0): 13-20. |
[7] | Yuan Yang, Linna Dai, Jianwei Qiu, Zhibiao Hu, Peng Wang, Yongtao Zhao, Huanhuan Guo, Pengchao Si, Rui Song. Modulating surface cation vacancies of nickel-cobalt oxides as efficient catalysts for lithium-oxygen batteries [J]. J. Mater. Sci. Technol., 2023, 139(0): 147-155. |
[8] | Song, Achmad Yanuar Maulana, Woojin Jae, Hyunjeong Gim, Boram Yun, Cybelle M. Futalan, Jongsik Kim. One-dimensional Li3VO4/carbon fiber composites for enhanced electrochemical performance as an anode material for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2023, 140(0): 142-152. |
[9] | SeungHyeok Chung, Ji Ho Shin, Ho Jin Ryu. Effects of dispersoid preforming via multistep sintering of oxide dispersion-strengthened CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 140(0): 187-200. |
[10] | Yuan Teng, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Dongtao Zhang, Hongguo Zhang, Qingmei Lu, Weixing Xia. Microstructure evolution of hot-deformed SmCo-based nanocomposites induced by thermo-mechanical processing [J]. J. Mater. Sci. Technol., 2023, 138(0): 193-202. |
[11] | R.T. da Silva, J.M. Morbec, G. Rahman, H.B. de Carvalho. A comprehensive study on the processing of Co:ZnO nanostructured ceramics: Defect chemistry engineering and grain growth kinetics [J]. J. Mater. Sci. Technol., 2023, 138(0): 221-232. |
[12] | Kan Fang, Fei Li, Gui-Gen Wang, Yi-Lin Liu, Man-Lin Tan, Da-Qiang Zhao, Hua-Yu Zhang, Jie-Cai Han. High mass-loading and binder-free flexible vanadium-based oxide cathode for zinc-ion battery via a bridge of MXene [J]. J. Mater. Sci. Technol., 2023, 143(0): 84-92. |
[13] | Yitian Wang, Yonghao Wu, Yuqi Zhang, Xiangfeng Li, Li Min, Quanle Cao, Yi Luo, Xiao Yang, Minxun Lu, Yong Zhou, Xiangdong Zhu, Chongqi Tu, Xingdong Zhang. Graphene oxide coated three-dimensional printed biphasic calcium phosphate scaffold for angiogenic and osteogenic synergy in repairing critical-size bone defect [J]. J. Mater. Sci. Technol., 2023, 145(0): 25-39. |
[14] | Zexiang Luo, Zhen Liu, Hanbing He, Zhihao Zhang, Yong Chen, Chaoqun Peng, Jing Zeng. Suppressing the dissolution of vanadium by organic-inorganic hybrid for aqueous zinc-ion batteries [J]. J. Mater. Sci. Technol., 2023, 145(0): 93-100. |
[15] | Lingxia Li, Yuting Li, Jianli Qiao, Mingkun Du. Developing high-Q × f value MgNb2-xTaxO6(0≤x≤0.8) columbite ceramics and clarifying the impact mechanism of dielectric loss: Crystal structure, Raman vibrations, microstructure, lattice defects, chemical bond characteristics, structural parameters, and microwave dielectric properties in-depth studies [J]. J. Mater. Sci. Technol., 2023, 146(0): 186-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||