J. Mater. Sci. Technol. ›› 2023, Vol. 157: 98-106.DOI: 10.1016/j.jmst.2022.12.027
• Research Article • Previous Articles Next Articles
Jun Wanga, Xiaoyu Chonga,*, Liang Lvb, Yuncheng Wangb, Xiaolan Jib, Haitao Yunb, Jing Fenga,*
Received:
2022-09-29
Revised:
2022-09-29
Accepted:
2022-09-29
Published:
2023-09-10
Online:
2023-09-07
Contact:
*E-mail addresses:. xiaoyuchong@kust.edu.cn (X. Chong), jingfeng@kmust.edu.cn (J. Feng)
Jun Wang, Xiaoyu Chong, Liang Lv, Yuncheng Wang, Xiaolan Ji, Haitao Yun, Jing Feng. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties[J]. J. Mater. Sci. Technol., 2023, 157: 98-106.
[1] B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci.Technol. 35 (2019) 833-851. [2] M. Huang, J. Liang, P. Zhang, Y. Li, Y. Han, Z. Yang, W. Pan, C. Wan, J. Mater. Sci.Technol. 100 (2022) 67-74. [3] K. Ren, Q. Wang, G. Shao, X. Zhao, Y. Wang, Scr. Mater. 178 (2020) 382-386. [4] F. Li, L. Zhou, J.X. Liu, Y. Liang, G.J. Zhang, J. Adv. Ceram. 8 (2019) 576-582. [5] X. Ping, B. Meng, C. Li, W. Lin, Y. Cheng, C. Fang, H. Zhang, W. Liang, Q. Zheng, J. Am. Ceram.Soc. 105 (2022) 4 910-4 920. [6] H. Zhang, L. Zhao, W. Sang, X. Chen, A. Tang, H. Zhang, Ceram. Int. 48 (2022) 1512-1521. [7] Z. Zhao, H. Xiang, H. Chen, F.Z. Dai, X. Wang, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 595-605. [8] Y. Dong, K. Ren, Q. Wang, G. Shao, Y. Wang, J. Adv. Ceram. 11 (2022) 66-74. [9] X. Ren, Z. Tian, J. Zhang, J. Wang, Scr. Mater. 168 (2019) 47-50. [10] J. Zhu, X. Meng, J. Xu, P. Zhang, Z. Lou, M.J. Reece, F. Gao, J. Eur. Ceram.Soc. 41 (2021) 1052-1057. [11] Z.Y. Wei, G.H. Meng, L. Chen, G.R. Li, M.J. Liu, W.X. Zhang, L.N. Zhao, Q. Zhang, X.D. Zhang, C.L. Wan, J. Adv. Ceram. 11 (2022) 985-1068. [12] W. Ma, S. Gong, H. Li, H. Xu, Surf. Coat. Technol. 202 (2008) 2704-2708. [13] J. Wang, X. Chong, R. Zhou, J. Feng, Scr. Mater. 126 (2017) 24-28. [14] L. Chen, M. Hu, P. Wu, J. Feng, J. Am. Ceram.Soc. 102 (2019) 4 809-4 821. [15] J. Wang, F. Wu, R. Zou, Y. Wu, M. Gan, J. Feng, X. Chong, J. Am. Ceram.Soc. 104 (2021) 5873-5882. [16] J.T. Zhu, Z.H. Lou, P. Zhang, J. Zhao, X.Y. Meng, J. Xu, F. Gao, J. Inorg. Mater. 36 (2021) 411. [17] K. Kurosaki, A. Kosuga, H. Muta, M. Uno, S. Yamanaka, Appl. Phys. Lett. 87 (2005) 061919. [18] D. Sanditov, V. Belomestnykh, Tech. Phys. 56 (2011) 1619-1623. [19] Y. Yao, G. Ren, Y. Yu, J. Che, T. Liang, L. Li, Y. Liu, F. Yang, X. Zhao, J. Am. Ceram.Soc. 105 (2022) 4360-4374. [20] J. Feng, S. Shian, B. Xiao, D.R. Clarke, Phys. Rev. B 90 (2014) 094102. [21] P. Wu, M. Hu, L. Chen, W. Chen, X. Chong, H. Gu, J. Feng, Materialia 4 (2018) 478-486. [22] Y. Luo, L. Chen, P. Wu, P. Song, J. Feng, Ceram. Int. 44 (2018) 13999-14006. [23] S. Shian, P. Sarin, M. Gurak, M. Baram, W.M. Kriven, D.R. Clarke, Acta Mater. 69 (2014) 196-202. [24] C. Luo, C. Li, K. Cao, J. Li, J. Luo, Q. Zhang, Q. Zhou, F. Zhang, L. Gu, L. Yang, J. Mater. Sci.Technol. 127 (2022) 78-88. [25] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751-767. [26] H. Cong, H. Zhang, J. Wang, W. Yu, J. Fan, X. Cheng, S. Sun, J. Zhang, Q. Lu, C. Jiang, J. Appl. Crystallogr. 42 (2009) 284-294. [27] M.D. Gan, X.Y. Chong, W. Yu, B. Xiao, J. Feng, J. Am. Ceram.Soc. 106 (2023) 3103-3115. [28] X. Ren, W. Pan, Acta Mater. 69 (2014) 397-406. [29] X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, Y. Zhou, J. Mater. Sci.Technol. 31 (2015) 369-374. [30] B.K. Jang, J. Alloy. Compd. 426 (2006) 312-315. [31] K. Yang, L. Chen, F. Wu, Q. Zheng, J. Li, P. Song, Y. Wang, R. Liu, J. Feng, Ceram. Int. 46 (2020) 28451-28458. [32] D. Liu, B. Shi, L. Geng, Y. Wang, B. Xu, Y. Chen, J. Adv. Ceram. 11 (2022) 961-973. [33] F. Zhou, Y. Wang, Z. Cui, L. Wang, J. Gou, Q. Zhang, C. Wang, Ceram. Int. 43 (2017) 4102-4111. [34] G.A. Slack, J. Phys. Chem. Solids 34 (1973) 321-335. [35] D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46 (1992) 6131. [36] D. Clarke, C. Levi, Annu. Rev. Mater. Res. 33 (2003) 383-417. [37] Y. Zhang, L. Guo, Y. Yang, H. Guo, H. Zhang, S. Gong, Chin. J. Aeronaut. 25 (2012) 948-953. [38] Y. Xue, X. Zhao, Y. An, Y. Wang, M. Gao, H. Zhou, J. Chen, J. Adv. Ceram. 11 (2022) 615-628. [39] P.G. Klemens, Int. J. Thermophys. 22 (2001) 265-275. [40] R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher, W. Zhang, Adv. Mater. 29 (38) (2017) 1702712. [41] J. Yang, X. Qian, W. Pan, R. Yang, Z. Li, Y. Han, M. Zhao, M. Huang, C. Wan, Adv. Mater. 31 (2019) 1808222. [42] J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Lett. 106 (2011) 045901. [43] J. Garg, G. Chen, Phys. Rev. B 87 (2013) 140302. [44] S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, Science 348 (2015) 109-114. [45] H. Xiang, Y. Xing, F.Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, J. Adv. Ceram. 10 (2021) 385-441. [46] Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65 (2014) 85-97. [47] R. Aso, D. Kan, Y. Shimakawa, H. Kurata, Sci. Rep. 3 (2013) 1-6. [48] Y.T. Shao, R. Yuan, Y. Hu, Q. Yang, J.M. Zuo, arXiv preprint arXiv: 1903.04082, 2019. [49] A. Sood, R. Cheaito, T. Bai, H. Kwon, Y. Wang, C. Li, L. Yates, T. Bougher, S. Gra-ham, M.Asheghi, Nano Lett. 18 (2018) 3466-3472. [50] Y. Wang, F. Yang, P. Xiao, Acta Mater. 60 (2012) 7024-7033. [51] Y. Wang, F. Yang, P. Xiao, Acta Mater. 68 (2014) 106-115. [52] S. Korkos, N.J. Xanthopoulos, M.A. Botzakaki, C. Drivas, S. Kennou, S. Ladas, A. Travlos, S.N. Georga, C.A. Krontiras, J. Vac. Sci. Technol. A 38 (2020) 032402. [53] R. Simpson, R.G. White, J.F. Watts, M.A. Baker, Appl. Surf. Sci. 405 (2017) 79-87. [54] C.Y. Huang, C.Y. Huang, T.L. Tsai, C.A. Lin, T.Y. Tseng, Appl. Phys. Lett. 104 (2014) 062901. [55] M. Nand, P. Rajput, R. Choudhary, S. Jha, AIP Conf. Proc. 2115 (2019) 030330. [56] X. Wang, D. Zhou, S. Li, X. Liu, P. Zhao, N. Sun, F. Ali, J. Wang, Ceram. Int. 44 (2018) 13867-13872. [57] L.G. Wang, X. Qian, Y.Q. Cao, Z.Y. Cao, G.Y. Fang, A.D. Li, D. Wu, Nanoscale Res. Lett. 10 (2015) 1-8. [58] J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2 (2000) 1319-1324. [59] G.V. Samsonov, Lon-don, 2013. [60] N.S. Jacobson, Ohio, 1989. [61] M. Chandrasekharaiah, in: Paper from the characterization of high temperature vapors, 1967, pp. 495-507. [62] U. Schulz, B. Saruhan, K. Fritscher, C. Leyens, Int. J. Appl. Ceram. Tec. 1 (2004) 302-315. [63] C.R. Stanek, L. Minervini, R.W. Grimes, J. Am. Ceram.Soc. 85 (2002) 2792-2798. [64] K. Schlichting, N. Padture, P. Klemens, J. Mater. Sci. 36 (2001) 3003-3010. [65] H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, D. Stöver, J. Am. Ceram.Soc. 86 (2003) 1338-1344. [66] K. Ren, Q. Wang, Y. Cao, G. Shao, Y. Wang, J. Eur. Ceram.Soc. 41 (2021) 1720-1725. [67] Q. Liu, S. Huang, A. He, J. Mater. Sci.Technol. 35 (2019) 2814-2823. |
[1] | Qing Cheng, Jinyong Mo, Xiaoqing Li, Xiandong Xu. A revisit to the role of Mo in an MP35N superalloy: An experimental and theoretical study [J]. J. Mater. Sci. Technol., 2023, 157(0): 60-70. |
[2] | Xu-Ye Xin, Jun Ma, Hong-Quan Liu, Yi-Jie Gu, Yan-Fang Wang, Hong-Zhi Cui. A simple Pb-doping to achieve bonding evolution, VSn and resonant level shifting for regulating thermoelectric transport behavior of SnTe [J]. J. Mater. Sci. Technol., 2023, 151(0): 66-72. |
[3] | Seong-Hwang Kim, Sang-Jin Park, Seul-Yi Lee, Soo-Jin Park. Amine functionalization on thermal and mechanical behaviors of graphite nanofibers-loaded epoxy composites [J]. J. Mater. Sci. Technol., 2023, 151(0): 80-88. |
[4] | Wan-Yu Lyu, Wei-Di Liu, Meng Li, Xiao-Lei Shi, Min Hong, Tianyi Cao, Kai Guo, Jun Luo, Jin Zou, Zhi-Gang Chen. Condensed point defects enhance thermoelectric performance of rare-earth Lu-doped GeTe [J]. J. Mater. Sci. Technol., 2023, 151(0): 227-233. |
[5] | Juntao Song, Yuan Cheng, Huimin Xiang, Fu-Zhi Dai, Shun Dong, Guiqing Chen, Ping Hu, Xinghong Zhang, Wenbo Han, Yanchun Zhou. Medium and high-entropy transition mental disilicides with improved infrared emissivity for thermal protection applications [J]. J. Mater. Sci. Technol., 2023, 136(0): 149-158. |
[6] | Yexiang Cui, Fei Xu, Di Bao, Yueyang Gao, Jianwen Peng, Dan Lin, Haolei Geng, Xiaosong Shen, Yanji Zhu, Huaiyuan Wang. Construction of 3D interconnected boron nitride/carbon nanofiber hybrid network within polymer composite for thermal conductivity improvement [J]. J. Mater. Sci. Technol., 2023, 147(0): 165-175. |
[7] | Zhongyin Zhang, Xuanhui Fan, Jie Zhu, Kunpeng Yuan, Jing Zhou, Dawei Tang. Pressure-driven anomalous thermal transport behaviors in gallium arsenide [J]. J. Mater. Sci. Technol., 2023, 142(0): 89-97. |
[8] | Yisimayili Tuersun, Xu Huang, Mingdeng Huang, Weiguang Lin, Pingjun Luo, Haoran Yang, Sheng Chu. Enhanced thermal performance from liquid metal in copper/graphite filled elastomer [J]. J. Mater. Sci. Technol., 2023, 152(0): 247-255. |
[9] | L. Lu Xie, T. Fei Shi, J. Chao Lin, X. Kai Zhang, X. Kang Zhong, K. Ke Liu, B. Ke Dong, Cheng Yang, X. Lian Wang, T. Jiao Xiong, W. Sheng Yan, J. Ping Xu, H. Can Chen, Wen Yin, Ming Li, Peng Tong, W. Hai Song, Y. Ping Sun. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate [J]. J. Mater. Sci. Technol., 2023, 146(0): 80-85. |
[10] | Lingxia Li, Yuting Li, Jianli Qiao, Mingkun Du. Developing high-Q × f value MgNb2-xTaxO6(0≤x≤0.8) columbite ceramics and clarifying the impact mechanism of dielectric loss: Crystal structure, Raman vibrations, microstructure, lattice defects, chemical bond characteristics, structural parameters, and microwave dielectric properties in-depth studies [J]. J. Mater. Sci. Technol., 2023, 146(0): 186-199. |
[11] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[12] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[13] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[14] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[15] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||