J. Mater. Sci. Technol. ›› 2023, Vol. 163: 212-222.DOI: 10.1016/j.jmst.2023.04.027
• Research Article • Previous Articles Next Articles
X. Liua, L. Songa,b,*, A. Starkc, F. Pyczakc, T.B. Zhanga,b
Received:
2023-02-14
Revised:
2023-04-08
Accepted:
2023-04-11
Published:
2023-11-10
Online:
2023-03-25
Contact:
* E-mail address: songlin@nwpu.edu.cn (L. Song).
X. Liu, L. Song, A. Stark, F. Pyczak, T.B. Zhang. In-situ synchrotron high energy X-ray diffraction study on the internal strain evolution of D019-α2 phase during high-temperature compression and subsequent annealing in a TiAl alloy[J]. J. Mater. Sci. Technol., 2023, 163: 212-222.
[1] Y.W. Kim, S.L.Kim JOM, 5(2018) 1-8 [2] H. Clemens, S. Mayer Adv.Eng. Mater., 15(2013) 191-215 [3] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. lorenz, J.Mullauer, M. Oehring, J.D.H. Paul Adv. Eng. Mater., 2(2000) 699-720 [4] F. Appel, H. Clemens, F.D.Fischer Prog. Mater. Sci., 81(2016) 55-124 [5] Y. Umakoshi, T. Nakano Acta Metall. Mater., 41(1993) 1151-1161 [6] J.M.K.Wiezorek, X.D. Zhang, A. Godfrey, D.Hu, M.H. Loretto Scr. Mater., 38(1998) 811-817 [7] J.B. Singh, G. Molénat, M. Sundararaman, S. Banerjee, G. Saada, P. Veyssière, A. Couret Philos.Mag., 86(2006) 2429-2450 [8] H. Inui, Y. Toda, Y. Shirai, M. Yamaguchi Philos.Mag. A, 69(1994) 1161-1177 [9] Y. Umakoshi, T. Nakano, T. Takenaka, K. Sumimoto, T. Yamane Acta Metall. Mater., 41(1993) 1149-1154 [10] Y. Minonishi Mater.Sci. Eng. A,192-193(1995) 830-836 [11] M. Riemer, H.G. Jentsch, H. Biermann, H. Mughrabi Intermetallics, 7(1999) 241-249 [12] Y. Umakoshi, T. Nakano ISIJ Int., 32(1992) 1339-1347 [13] F. Appel, J.D.H.Paul, P. Staron, M. Oehring, O. Kolednik, J. Predan, F.D. Fischer Mater. Sci. Eng. A, 709(2018) 17-29 [14] F.A. Guo, V. Ji, M. Fran?ois, Y.G.Zhang Mater. Sci. Eng. A, 341(2003) 182-188 [15] J. Ding, M.H. Zhang, T. Ye, Y.F. Liang, Y. Ren, C.L. Dong, J.P.Lin Acta Mater., 145(2018) 504-515 [16] F.J. Humphreys, M. Hatherly Recrystallization and Related Annealing Phenomena (2nd ed.), Elsevier (2004) Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo [17] F. Appel, U. Sparka, R. Wagner Intermetallics, 7(1999) 325-334 [18] F. Appel, D. Herrmann, F.D. Fischer, J. Svoboda, E. Kozeschnik Int.J. Plasticity, 42(2013) 83-100 [19] I. Nikitin, M. Besel Scr.Mater., 58(2008) 239-242 [20] P. Fu, C.H.Jiang Mater. Des., 56(2014) 1034-1038 [21] P. Erdely, P. Staron, E. Maawad, N. Schell, H. Clemens, S. Mayer Acta Mater., 158(2018) 193-205 [22] Y. Mishin, Chr. Herzig Acta Mater., 48(2000) 589-623 [23] M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, D.C.Dunand Acta Mater., 55(2007) 1999-2011 [24] F. Appel, J.D.H. Paul, M. Oehring Gamma Titanium Aluminide Alloys: Science and Technology Wiley-VCH, Weinheim, Germany (2011) [25] N. Bibhanshu, G. Shankar, S. Suwas J.Mater. Res., 36(2021) 311-321 [26] L. Song, F. Appel, L. Wang, M. Oehring, X.G. Hu, A. Stark, J.Y. He, U. Lorenz, T.B. Zhang, J.P. Lin, F. Pyczak Acta Mater., 186(2020) 575-586 [27] B.L. Averbach, M. Cohen Trans.AIME, 176(1948) 401-415 [28] E. Maawad, H.-G. Brokmeier, Z.Y. Zhong, N. Al-Hamdany, M. Salih, L. Wagner, N. Schell Mater. Sci. Eng. A, 594(2014) 62-67 [29] B. Hutchinson Mater.Sci. Technol., 31(2015) 1393-1401 [30] S.R. Agnew, D.W. Brown, C.N.Tome Acta Mater., 54(2006) 4841-4852 [31] G. Garces, D.G. Morris, M.A.Munoz-Morris, P.Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, P. Adeva Acta Mater., 94(2015) 78-86 [32] N. Bibhanshu, S. Suwas J.Mater. Res., 35(2020) 1635-1646 [33] V. Singh, A. Kumar, C. Mondal, P.P.Bhattacharjee P. Ghosal, SN Appl. Sci., 1(2019) 366-377 [34] J.B. Singh, G. Molénat, M. Sundararaman, S. Banerjee, G. Saada, P. Veyssière, A. Couret Philos.Mag. Lett., 86(2006) 47-60 [35] J.W.L.Pang, T.M. Holden, J.S. Wright, T.E. Mason Acta Mater., 48(2008) 1131-1140 [36] Y.M. Cui, C.H. Li, C.S. Zhang, R.G. Li, Y. Ren, W.W. Zheng, Y.D. Wang Mater. Sci. Eng. A, 772 (2020), Article 138806 [37] D. Dye, H.J. Stone, R.C.Reed Solid State Mater., 5(2001) 31-37 [38] T. Fujiwara, A. Nakamura, M. Hosomi, S.R. Nishitani, Y. Shirai, M. Yamaguchi Philos.Mag. A, 61(1990) 591-606 [39] M.J.Blackburn, in: R.I. Jaffee, N.E. Promisel (Eds.), Pergamon Press, Oxford, 1970, p 663. [40] X.Q. Zhang, L.L. Ma, Y.F. Xue, Q.B. Fan, Z.H. Nie, L. Wang, J.M. Yin, H.F. Zhang, H.M.Fu J. Non-Cryst. Solids, 436(2016) 9-17 [41] S. Cheng, Y.D. Wang, H. Choo, X.L. Wang, J.D. Almer, P.K. Liaw, Y.K.Lee Acta Mater., 58(2010) 2419-2429 [42] G.E. Dieter, D. Bacon Mechanical Metallurgy McGraw-Hill, New York (1986) [43] D. Canelo-Yubero, G. Requena, F. Sket, C. Poletti, F. Warchomicka, J. Daniels, N. Schell, A. Stark Mater.Sci. Eng. A, 657(2016) 244-258 [44] F.A. Guo, V. Ji, Y.G. Zhang, C.Q.Chen Mater. Sci. Eng. A, 315(2001) 195-201 [45] R. Hoppe, F. Appel Acta Mater., 64(2014) 169-178 [46] C.W. Sinclair, J.D. Embury, G.C. Weatherly, K.T.Conlon Philos. Mag., 85(2005) 3137-3156 [47] J. Johansson, M. Oden, X.H.Zeng Acta Mater., 9(1999) 2669-2684 [48] D.A.Woodford J. Nucl. Mater., 79(1979) 345-353 [49] O. V?hringer R, Relaxation of Residual Stresses by Annealing or Mechanical Treatment Pergamon Press, Oxford (1987) [50] X.G. Hu, J.S. Li, L. Song, T.B.Zhang Mater. Des., 148(2018) 135-144 [51] B.X. Feng, X.N. Mao, G.J. Yang, L.L. Yu, X.D.Wu Mater. Sci. Eng. A, 512(2009) 105-108 [52] P. Juijerm, I. Altenberger Scr.Mater., 55(2006) 1111-1114 [53] L.C. Xie, C.H. Jiang, V. Ji Mater.Sci. Eng. A, 528(2011) 6478-6483 [54] S. Sriram, D.M. Dimiduk, P.M. Hazzledine, V.K.Vasudevan Philos. Mag. A, 76(1997) 965-993 [55] G. Sch?ck Phys.Status Solid, 8(1965) 499-507 [56] F.D. Fischer, J. Svoboda Int.J. Plasticity, 27(2011) 1384-1390 [57] F. Appel Mater.Sci. Eng. A, 317(2001) 115-127 [58] P. Beran, M. Heczko, T. Kruml, T. Panzner, S. van Petegem J. Mech. Phys. Solid, 95(2015) 647-662 [59] Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C.Chou J. Mater. Sci. Technol., 44(2020) 171-190 [60] Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S.Pan J. Magnes. Alloy., 9(2021) 1922-1941 [61] P. Sedmak, P. Sittner, J. Pilch, C. Curfs Acta Mater., 94(2015) 257-270 [62] L.L. Ma, L. Wang, Z.H. Nie, F.C. Wang, Y.F. Xue, J.L. Zhou, T.Q. Cao, Y.D. Wang, Y. Ren Acta Mater., 128 (2017) 12-21 [63] S. Zghal, S. Naka, A. Couret Acta Mater., 45(1997) 3005-3015 |
[1] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[2] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[3] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[4] | Yi Xiong, Phani S. Karamched, Chi-Toan Nguyen, David M.Collins, Christopher M.Magazzeni, Edmund Tarleton, Angus J.Wilkinson. Macroscopic analysis of time dependent plasticity in Ti alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 135-140. |
[5] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[6] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
[7] | Ying Zhang, Dongsheng Li, Xiaoqiang Li, Xiaochun Liu, Shiteng Zhao, Yong Li. Creep deformation and strength evolution mechanisms of a Ti-6Al-4V alloy during stress relaxation at elevated temperatures from elastic to plastic loading [J]. J. Mater. Sci. Technol., 2022, 126(0): 93-105. |
[8] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
[9] | Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing [J]. J. Mater. Sci. Technol., 2022, 96(0): 233-240. |
[10] | L.R. Zeng, L.M. Lei, X.M. Luo, G.P. Zhang. Toward an understanding of dwell fatigue damage mechanism of bimodal Ti-6Al-4V alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 244-255. |
[11] | Lin Song, Fritz Appel, Andreas Stark, Uwe Lorenz, Junyang He, Zhanbing He, Junpin Lin, Tiebang Zhang, Florian Pyczak. On the reversibility of the α2/ωo phase transformation in a high Nb containing TiAl alloy during high temperature deformation [J]. J. Mater. Sci. Technol., 2021, 93(0): 96-102. |
[12] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[13] | Hao Jin, Qing Jia, Quangang Xian, Ronghua Liu, Yuyou Cui, Dongsheng Xu, Rui Yang. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation [J]. J. Mater. Sci. Technol., 2020, 54(0): 190-195. |
[14] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[15] | Ruishan Xie, Qingyu Shi, Gaoqiang Chen. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model [J]. J. Mater. Sci. Technol., 2020, 59(0): 83-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||