J. Mater. Sci. Technol. ›› 2023, Vol. 134: 234-243.DOI: 10.1016/j.jmst.2022.07.003
• Research Article • Previous Articles Next Articles
Chaoyue Chena,1, Yingchun Xieb,1,*(), Shuo Yinc,*(
), Wenya Lid,*(
), Xiaotao Luoe, Xinliang Xief, Ruixin Zhaoa, Chunming Dengb, Jiang Wanga,*(
), Hanlin Liaog, Min Liub, Zhongming Rena
Received:
2022-06-22
Revised:
2022-07-08
Accepted:
2022-07-10
Published:
2023-01-20
Online:
2023-01-10
Contact:
Yingchun Xie,Shuo Yin,Wenya Li,Jiang Wang
About author:
jiangwang@i.shu.edu.cn (J. Wang).Chaoyue Chen, Yingchun Xie, Shuo Yin, Wenya Li, Xiaotao Luo, Xinliang Xie, Ruixin Zhao, Chunming Deng, Jiang Wang, Hanlin Liao, Min Liu, Zhongming Ren. Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing[J]. J. Mater. Sci. Technol., 2023, 134: 234-243.
Fig. 1. Feedstock powder and CSAM process: (a) surface morphology and (b) size distribution of pure Cu powders used for CSAM; (c) schematic sketch of CSAM process and the photos of standard tensile test samples.
Fig. 2. Multi-scale microstructure observation of the CSAM Cu. (a) OM of the etched sample showing the severely deformed particles; (b) 3D EBSD-IPF image illustrating the heterogeneous grain structure; (c) TEM thin-foil showing the mixture of nano and micro-scale grains; (d-g) magnified views of the EBSD-IPF image (d), grain boundary maps of the LAGB, HAGB and TB (e), KAM image indicating the dislocation density (f), grain size distribution (g); (h-j) TKD analysis of the IPF (k) and KAM (l) maps.
Fig. 4. Tensile property of CSAM pure Cu. (a) strain-stress curve of the CSAM Cu obtained in this work, with the inserted photo showing the tensile smaple before and after fracture. (b) A comparison of the mechanical properties with the previously reported CSAM Cu by various researchers [27], [28], [29], [30], [31] (CS-AS), CSAM Cu after annealing [32] (CS-annealed), bulk Cu materials with nanocrystalline structures produced from the processes like SMAT [33], ECAP [34], electroplating [35], laser and electron beam additive manufacturing [36], [37], [38], [39].
Fig. 5. Fracture morphology observation of the CSAM Cu. (a, b) Overview surface morphology of the fractured sample. (c) Etched cross-section morphology of the fractured sample observed by OM. (d) EBSD-IPF map revealing the cross-sectional grain structure of the fractured sample, which is acquired at the step size of 100 nm. (e-g) Bright-field TEM images of the cross-section regions of the fractured sample after 45% strain.
Fig. 7. Multi-scale characterizations of the deformed single particle. (a) Surface observation of the deposited particle in the substrate. (b) SEM of the cross-section region after FIB milling prepared for the following characterizations. (c) EBSD IPF map of the overview grain structures at particle cross-section, which is acquired with a step size of 100 nm. (d, e) EBSD IPF maps of the magnified views for the grain structures at the bottom and peripheral regions, respectively, which are acquired with a step size of 30 nm. (f-i) Bright-field TEM images of the thin foil sectioned from FIB milled sample from figure b. (f) Bright-field TEM revealing the elongated grains with shear bands. (g) Pile-up of high-density dislocation. (h and i) elongated ultrafine grains at the bottom and peripheral regions, respectively.
Fig. 8. Formation mechanism of the CASM deposit with unique infinite loops of extremely refined nano-grained structure: (a) a raw particle with uniform micro-grained structure, (b) the deformed particle during CSAM with gradient nano-grain structure upon impact, (c) the bonding of many deformed particles, (d) the final heterogeneous microstructure in the CSAM deposit.
[1] |
T. Fang, W. Li, N. Tao, K. Lu, Science 331 (6024) (2011) 1587-1590.
DOI PMID |
[2] | X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci 111 (20) (2014) 7197-7201. |
[3] | K. Lu, J. Lu, Mater. Sci. Eng. A 375 (2004) 38-45. |
[4] |
X. Yan, S. Yin, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu, M. Liu, Mater. Res. Lett. 7 (8) (2019) 327-333.
DOI URL |
[5] |
E. Ma, T. Zhu, Mater. Today 20 (6) (2017) 323-331.
DOI URL |
[6] | W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, J. Mater. Sci. Technol. 34 (3) (2017) 440-457. |
[7] |
C. Chen, Y. Xie, L. Liu, R. Zhao, X. Jin, S. Li, R. Huang, J. Wang, H. Liao, Z. Ren, J. Mater. Sci. Technol. 72 (2021) 39-51.
DOI URL |
[8] |
W. Ma, Y. Xie, C. Chen, H. Fukanuma, J. Wang, Z. Ren, R. Huang, J. Alloy. Compd. 792 (2019) 456-467.
DOI URL |
[9] |
D. Wu, W. Li, K. Liu, Y. Yang, S. Hao, J. Mater. Sci. Technol. 106 (2022) 211-224.
DOI URL |
[10] |
K. Yang, W. Li, C. Huang, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34 (11) (2018) 2167-2177.
DOI |
[11] |
X. Yang, W. Li, S. Yu, Y. Xu, K. Hu, Y. Zhao, J. Mater. Sci. Technol. 59 (2020) 117-128.
DOI URL |
[12] |
S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, R. Lupoi, J. Mater. Sci. Technol. 35 (6) (2019) 1003-1007.
DOI URL |
[13] |
P. Yu, N. Fan, Y. Zhang, Z. Wang, W. Li, R. Lupoi, S. Yin, Mater. Res. Lett. 10 (3) (2022) 124-132.
DOI URL |
[14] |
S. Suresh, S.-W. Lee, M. Aindow, H.D. Brody, V.K. Champagne, A.M. Dongare, Acta Mater. 182 (2019) 197-206.
DOI URL |
[15] |
T. Liu, J.D. Leazer, L.N. Brewer, Acta Mater. 168 (2019) 13-23.
DOI URL |
[16] |
K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34 (9) (2018) 1570-1579.
DOI |
[17] |
G.K. Williamson, W.H. Hall, Acta. Metall. 1 (1) (1953) 22-31.
DOI URL |
[18] |
G. Williamson, R.J.P.M. Smallman, Philos. Mag. 1 (1) (1956) 34-46.
DOI URL |
[19] | ASTM E8 /E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016 www.astm.org |
[20] |
Y. Zou, D. Goldbaum, J.A. Szpunar, S. Yue, Scr. Mater. 62 (6) (2010) 395-398.
DOI URL |
[21] |
Z. Zhang, S.K. Vajpai, D. Orlov, K. Ameyama, Mater. Sci. Eng. A 598 (2014) 106-113.
DOI URL |
[22] |
C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, H. Kreye, J. Appl. Phys. 93 (12) (2003) 10064-10070.
DOI URL |
[23] |
G. Bae, K. Kang, C. Lee, Mater. Lett. 89 (2012) 320-323.
DOI URL |
[24] |
Y.M. Wang, E. Ma, M.W. Chen, Appl. Phys. Lett. 80 (13) (2002) 2395-2397.
DOI URL |
[25] |
K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, C.C. Koch, Appl. Phys. Lett. 87 (9) (2005) 091904.
DOI URL |
[26] |
Y. Zhao, Y. Zhu, E.J. Lavernia, Adv. Eng. Mater. 12 (8) (2010) 769-778.
DOI URL |
[27] |
P. Coddet, C. Verdy, C. Coddet, F. Debray, Mater. Sci. Eng. A 662 (2016) 72-79.
DOI URL |
[28] |
R. Huang, M. Sone, W. Ma, H. Fukanuma, Surf. Coat. Technol. 261 (2015) 278-288.
DOI URL |
[29] |
T. Schmidt, F. Gaertner, H. Kreye, J. Therm. Spray. Technol. 15 (4) (2006) 488-494.
DOI URL |
[30] |
T. Schmidt, H. Assadi, F. Gaertner, H. Richter, T. Stoltenhoff, H. Kreye, T. Klassen, J. Therm. Spray. Technol. 18 (5-6) (2009) 794-808.
DOI URL |
[31] |
F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, M. Kocak, Surf. Coat. Technol. 200 (24) (2006) 6770-6782.
DOI URL |
[32] |
B. Yu, J. Tam, W. Li, H.J. Cho, J.G. Legoux, D. Poirier, J.D. Giallonardo, U. Erb, Materialia 7 (2019) 100356.
DOI URL |
[33] |
X.W. Liu, K. Wu, G. Wu, Y. Gao, L.L. Zhu, Y. Lu, J. Lu, Scr. Mater. 124 (2016) 103-107.
DOI URL |
[34] |
A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Acta Mater. 55 (1) (2007) 13-28.
DOI URL |
[35] |
C.H. Boyle, S.A. Meguid, Nucl. Eng. Des. 293 (2015) 403-412.
DOI URL |
[36] |
S. Yadav, C.P. Paul, A.N. Jinoop, A.K. Rai, K.S. Bindra, J. Manuf. Process. 58 (2020) 984-997.
DOI URL |
[37] |
X. Yan, C. Chang, D. Dong, S. Gao, W. Ma, M. Liu, H. Liao, S. Yin, Mater. Sci. Eng. A 789 (2020) 139615.
DOI URL |
[38] |
R. Guschlbauer, A.K. Burkhardt, Z. Fu, C. Körner, Mater. Sci. Eng. A 779 (2020) 139106.
DOI URL |
[39] |
R. Guschlbauer, S. Momeni, F. Osmanlic, C. Körner, Mater. Charact. 143 (2018) 163-170.
DOI URL |
[40] |
A.A. Tiamiyu, E.L. Pang, X. Chen, J.M. LeBeau, K.A. Nelson, C.A. Schuh, Nature Mater. 21 (2022) 786-794.
DOI URL |
[41] |
S. Yin, R. Jenkins, X. Yan, R. Lupoi, Mater. Sci. Eng. A 734 (2018) 67-76.
DOI URL |
[42] |
H. Seiner, J. Cizek, P. Sedlák, R. Huang, J. Cupera, I. Dlouhy, M. Landa, Surf. Coat. Technol. 291 (2016) 342-347.
DOI URL |
[43] |
S.V. Raj, R. Pawlik, W. Loewenthal, Mater. Sci. Eng. A 513-514 (2009) 59-63.
DOI URL |
[44] | W. Han, X.-m. Meng, J.-b. Zhang, J. Zhao, International 19 (3) (2012) 73-78. |
[45] |
X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129 (2017) 183-193.
DOI URL |
[46] | W.F. Smith, J. Hashemi, Foundations of Materials Science and Engineering, Mc-Graw-Hill, 2004. |
[47] |
A. Molotnikov, R. Lapovok, C.H.J. Davies, W. Cao, Y. Estrin, Scr. Mater. 59 (11) (2008) 1182-1185.
DOI URL |
[48] | M. Besterci, Structure analysis of dispersion strengthening, Scr. Metall. Mater. 30 (9) (1994) 1145-1149. |
[49] |
N. Hansen, B. Ralph, Acta. Metall. 30 (2) (1982) 411-417.
DOI URL |
[50] |
L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, Acta Mater. 53 (7) (2005) 2169-2179.
DOI URL |
[1] | Wei Wang, Yanke Liu, Zihan Zhang, Muxin Yang, Lingling Zhou, Jing Wang, Ping Jiang, Fuping Yuan, Xiaolei Wu. Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation [J]. J. Mater. Sci. Technol., 2023, 132(0): 110-118. |
[2] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
[3] | Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys [J]. J. Mater. Sci. Technol., 2023, 132(0): 27-41. |
[4] | Zhaojun Li, Kunpeng Lin, Hailiang Fang, HuiYu , Junzhuo Wang, Yimin Miao, Lianjun Wang, Jianlin Li, Wan Jiang. The mortise and tenon structure enabling lamellar carbon composites of ultra-high bending strength [J]. J. Mater. Sci. Technol., 2023, 133(0): 249-258. |
[5] | Xiaocan Wen, Hailong Huang, Honghui Wu, Meisa Zhou, Yeqiang Bu, Xiaoyuan Yuan, Suihe Jiang, Hui Wang, Xiongjun Liu, Hongtao Wang, Jiabin Liu, Yuan Wu, Zhaoping Lu. Enhanced plastic deformation capacity in hexagonal-close-packed medium entropy alloys via facilitating cross slip [J]. J. Mater. Sci. Technol., 2023, 134(0): 1-10. |
[6] | Yingang Liu, Jingqi Zhang, Qiang Sun, Meng Li, Ming Yan, Xing Cheng, Miaoquan Li, Ming-Xing Zhang. Laser powder bed fusion of copper matrix iron particle reinforced nanocomposite with high strength and high conductivity [J]. J. Mater. Sci. Technol., 2023, 134(0): 50-59. |
[7] | X.S. Liu, R. Li, X.F. Fan, Q.Q. Liu, X. Tong, A.X. Li, S. Xu, H. Yang, S.B. Yu, M.H. Jiang, C. Huo, P.F. Yu, M.T. Dove, G. Li. Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening [J]. J. Mater. Sci. Technol., 2023, 134(0): 60-66. |
[8] | Wei Fu, Pengfei Dang, Shengwu Guo, Zijun Ren, Daqing Fang, Xiangdong Ding, Jun Sun. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy [J]. J. Mater. Sci. Technol., 2023, 134(0): 67-80. |
[9] | Jiawei Zou, Xiaoqian Fu, Yajing Song, Tianxin Li, Yiping Lu, Ze Zhang, Qian Yu. High strength and deformation stability achieved in CrCoNi alloy containing deformable oxides [J]. J. Mater. Sci. Technol., 2023, 134(0): 89-94. |
[10] | Jiahao Li, Kejie Lu, Xiaojun Zhao, Xinkai Ma, Fuguo Li, Hongbo Pan, Jieming Chen. A superior strength-ductility synergy of Al0.1CrFeCoNi high-entropy alloy with fully recrystallized ultrafine grains and annealing twins [J]. J. Mater. Sci. Technol., 2022, 131(0): 185-194. |
[11] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[12] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[13] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[14] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
[15] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||