J. Mater. Sci. Technol. ›› 2023, Vol. 133: 249-258.DOI: 10.1016/j.jmst.2022.03.030
• Research article • Previous Articles
Zhaojun Lia, Kunpeng Lina, Hailiang Fangb, HuiYu c, Junzhuo Wangb, Yimin Miaoa, Lianjun Wangb,*(), Jianlin Lia,*(
), Wan Jiangb,*(
)
Received:
2022-01-22
Revised:
2022-03-13
Accepted:
2022-03-15
Published:
2022-05-14
Online:
2022-05-14
Contact:
Lianjun Wang,Jianlin Li,Wan Jiang
About author:
wanjiang@dhu.edu.cn (W. Jiang).Zhaojun Li, Kunpeng Lin, Hailiang Fang, HuiYu , Junzhuo Wang, Yimin Miao, Lianjun Wang, Jianlin Li, Wan Jiang. The mortise and tenon structure enabling lamellar carbon composites of ultra-high bending strength[J]. J. Mater. Sci. Technol., 2023, 133: 249-258.
Fig. 2. FESEM micrographs of CFs of LBs before (left column) and after sintering (right column). (a, b) LB-35, (c, d) LB-40, (e, f) LB-45, and (g, h) LB-50.
Fig. 3. Schematic diagram (top view) of layered LB bulks with a “mortise and tenon-like structure”. The crossings of the CF tows in the composite performs act as mortise, where the graphite nano onions derived from the NDs are sintered to be strong “tenons”. Such a structure bestows the LBs with robust resistance to delamination between the layers of LBs when subject to shear stress. Here nano graphite onions are green colored while CFs purple.
Fig. 4. Densities of LBs and carbon/CF composites in other reports. The black square dots represent the bulk densities of LBs composites with different matrix volume contents, and correspond to samples LB-35, LB-40, LB-45 and LB-50 (from left to right). The values marked with red dots represent the bulk density of carbon/CF composites in other reports.
Fig. 7. The XPS wide scan spectra of treated-CF and LB-40 before and after sintering (a), C1s peak spectra of treated-CF (b) and LB-40 before (c) and after (d) sintering.
Peak | Treated-CF | Before sintering | After sintered | |||
---|---|---|---|---|---|---|
Binding energy (eV) | Peak ratio (%) | Binding energy (eV) | Peak ratio (%) | Binding energy (eV) | Peak ratio (%) | |
sp2 | 284.2 | 53.4 | 284.5 | 28.10 | 284.3 | 50.20 |
sp3 | 284.6 | 13.3 | 285.2 | 51.58 | 285.1 | 22.70 |
C-O | 286 | 28.0 | 286.3 | 17.56 | 286.1 | 19.22 |
C=O | 288.4 | 6.65 | 288.2 | 2.76 | 288.1 | 5.29 |
π-π | / | / | 291 | 2.58 |
Table 1. The results of C1s peak by curve fitting method.
Peak | Treated-CF | Before sintering | After sintered | |||
---|---|---|---|---|---|---|
Binding energy (eV) | Peak ratio (%) | Binding energy (eV) | Peak ratio (%) | Binding energy (eV) | Peak ratio (%) | |
sp2 | 284.2 | 53.4 | 284.5 | 28.10 | 284.3 | 50.20 |
sp3 | 284.6 | 13.3 | 285.2 | 51.58 | 285.1 | 22.70 |
C-O | 286 | 28.0 | 286.3 | 17.56 | 286.1 | 19.22 |
C=O | 288.4 | 6.65 | 288.2 | 2.76 | 288.1 | 5.29 |
π-π | / | / | 291 | 2.58 |
Fig. 8. Bending strength (a) and the load-displacement curves for three-point bending test (b) of the LBs; and FESEM micrographs showing fracture morphologies of (c) LB-35, (d) LB-40, (e) LB-45, and (f) LB-50.
Materials | Density, ρ (g cm−3) | Bending strength, σ ( GPa) | Specific strength, σ/ρ / (GPa/(g cm−3)) | Refs. |
---|---|---|---|---|
ZrO2 (TZ-3Y) | 6.07 | 1.70 | 0.28 | [ |
AlN-Y2O3 | 3.50 | 0.90 | 0.26 | |
Si3N4 | 3.2-3.3 | 0.99 | 0.3-0.31 | |
Al2O3-SiC | 3.75 | 0.91 | 0.24 | |
SiC | 3.15-3.2 | 0.6-1.0 | 0.19-0.31 | |
SiC/CF | 1.7-3.2 | 0.18-0.70 | 0.11-0.22 | [ |
Carbon/CF | ∼1.7 | 0.20-0.80 | 0.12-0.47 | [ |
Resin/CF | ∼1.7 | ∼1.73 | ∼1.02 | [ |
LB-40 | 1.49 | 1.20 | 0.81 | This work |
Table 2. Specific strengths of principal structural materials and LB-40.
Materials | Density, ρ (g cm−3) | Bending strength, σ ( GPa) | Specific strength, σ/ρ / (GPa/(g cm−3)) | Refs. |
---|---|---|---|---|
ZrO2 (TZ-3Y) | 6.07 | 1.70 | 0.28 | [ |
AlN-Y2O3 | 3.50 | 0.90 | 0.26 | |
Si3N4 | 3.2-3.3 | 0.99 | 0.3-0.31 | |
Al2O3-SiC | 3.75 | 0.91 | 0.24 | |
SiC | 3.15-3.2 | 0.6-1.0 | 0.19-0.31 | |
SiC/CF | 1.7-3.2 | 0.18-0.70 | 0.11-0.22 | [ |
Carbon/CF | ∼1.7 | 0.20-0.80 | 0.12-0.47 | [ |
Resin/CF | ∼1.7 | ∼1.73 | ∼1.02 | [ |
LB-40 | 1.49 | 1.20 | 0.81 | This work |
[1] |
A. Kafi, M. Huson, C. Creighton, J. Khoo, L. Mazzola, T. Gengenbach, F. Jones, B. Fox, Compos. Sci. Technol. 94 (2014) 89-95.
DOI URL |
[2] | K.W. Kim, D.K. Kim, B.S. Kim, K.H. An, S.J. Park, K.Y. Rhee, B.J. Kim, Compos. Part B 112 (2017) 15-21. |
[3] | L. Ma, L.X. Wu, X.Y. Cheng, D.X. Zhuo, Z.X. Weng, R. Wang, Compos. Part A 72 (2015) 65-74. |
[4] | Y.N. Zhang, F.J. Xu, C.Y. Zhang, J.J. Wang, Z.M. Jia, H. David, Y.P. Qiu, Compos. Part B 99 (2016) 358-365. |
[5] |
T. Windhorst, G. Blount, Mater. Des. 18 (1) (1997) 11-15.
DOI URL |
[6] | L.Y. Han, Q. Song, J.J. Sun, K.Z. Li, Y.F. Lu, Compos. Part B 187 (2020) 107856. |
[7] |
L. Feng, K.Z. Li, Z.G. Zhao, H.J. Li, L.L. Zhang, J.H. Lu, Q. Song, Mater. Des. 92 (2016) 120-128.
DOI URL |
[8] |
Q. Song, Q.L. Shen, Q.G. Fu, H.J. Li, J. Mater. Sci. Technol. 35 (12) (2019) 2799-2808.
DOI URL |
[9] | S.A. Chen, Y. Pan, Z.Y. Li, H.F. Hu, IOP Conf. Ser.: Mater. Sci. Eng. 479 (1) (2019) 012110. |
[10] | Q. Song, K.Z. Li, H.L. Li, H.J. Li, C. Ren, Carbon 50 (10) (2012) 3949-3952. |
[11] | S.M. Oh, J.Y. Lee, Carbon 27 (3) (1989) 423-430. |
[12] | T.L. Dhami, O.P. Bahl, P.K. Jain, Carbon 33 (11) (1995) 1517-1524. |
[13] | J.J. Sha, J.X. Dai, J. Li, Z.Q. Wei, J.M. Hausherr, W. Krenkel, Compos. Interfaces 20 (8) (2013) 543-552. |
[14] | S.R. Dhakate, R.B. Mathur, T.L. Dham, Carbon Lett. 3 (3)(2002). |
[15] | S.R. Dhakate, O.P. Bahl, Carbon 41 (6) (2003) 1193-1203. |
[16] |
H.J. Li, Z.Q. Li, C.W. Cao, J. Wang, S.Y. Zhang, W. Li, J. Compos. Mater. 47 (5)(2013) 529-537.
DOI URL |
[17] | J.W. Klett, D.D. Edie, Carbon 33 (10) (1995) 1485-1503. |
[18] | H.L. Li, H.J. Li, J.H. Lu, K.Z. Li, C. Sun, Zhang D.S, Mater. Sci. Eng. A 547 (1)(2012) 138-141. |
[19] |
Q. Song, K.Z. Li, L.H. Qi, H.J. Li, J.H. Lu, L.L. Zhang, Q.G. Fu, Mater. Sci. Eng. A 564 (2013) 71-75.
DOI URL |
[20] | G. Kou, L.J. Guo, H.J. Li, N.K. Liu, W. Li, H. Shen, L.J. Bai, Compos. Part B 174 (2019) 107029. |
[21] |
J.J. Ran, K.P. Lin, H.T. Yang, J.L. Li, L.J. Wang, W. Jiang, Appl. Phys. A 124 (3)(2018) 262.
DOI URL |
[22] | K.P. Lin, H.L. Fang, F. Wen, L.J. Wang, W. Jiang, J.L. Li,Carbon 149 (2019) 436-4 4 4. |
[23] | J. Cebik, J.K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi, S. Oss- wald, Nanotechnology 24 (20) (2013) 205703. |
[24] | A.C. Ferrari, J. Robertson, Phil. Trans. R. Soc. A 362 (1824) (2004) 2477-2512. |
[25] |
S. Osswald, A. Gurga, F. Kellogg, K. Cho, G. Yushin, Y. Gogotsi, Diamond Relat. Mater. 16 (11) (2007) 1967-1973.
DOI URL |
[26] |
A.C. Ferrari, Solid State Commun. 143 (1-2) (2007) 47-57.
DOI URL |
[27] |
J. Díaz, G. Paolicelli, S. Ferrer, F. Comin, Phys. Rev. B 54 (11) (1996) 8064-8069.
PMID |
[28] |
P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Appl. Surf. Sci. 136 (1-2)(1998) 105-110.
DOI URL |
[29] |
B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A.M. Rao, P.C. Eklund, K. Oshida, M. Endo, Phys. Rev. B 62 (16) (20 0 0) 11209-11218.
DOI URL |
[30] |
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (20) (20 0 0) 14095-14107.
DOI URL |
[31] |
R. Venugopalan, M. Roy, S. Thomas, A.K. Patra, D. Sathiyamoorthy, A.K. Tyagi, J. Nucl. Mater. 433 (1-3) (2013) 494-503.
DOI URL |
[32] |
K.P. Lin, H.L. Fang, A. Gao, H. Yu, L.J. Wang, Q. Yu, L. Gu, Q.H. Zhang, J.L. Li,. Jiang, Adv. Mater. 33 (17) (2021) 2007513.
DOI URL |
[33] |
S. Wang, Z.H. Chen, Q.S. Ma, H.F. Hu, W.W. Zheng, Mater. Sci. Eng. A 407 (1-2)(2005) 245-249.
DOI URL |
[34] |
Y. Swolfs, R.M. McMeeking, I. Verpoest, L. Gorbatikh, Compos. Sci. Technol. 108 (2015) 16-22.
DOI URL |
[35] |
S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana, B.S. Chun, Mater. Sci. Eng. A 347 (1-2) (2003) 198-204.
DOI URL |
[36] |
J. Segurado, C. González, J. Llorca, Acta Mater. 51 (8) (2003) 2355-2369.
DOI URL |
[37] |
Y.H. Zhang, Z.C. Xiao, J.P. Wang, J.F. Yang, Z.H. Jin, Mater. Sci. Eng. A 502 (1-2)(2009) 64-69.
DOI URL |
[38] | Y.R. Mahajan, R. Johnson, Handbook of Advanced Ceramics and Compos- ites Defense, Security, Aerospace and Energy Applications: Defense, Security, Aerospace and Energy Applications,Cham, Springer International Publishing, Switzerland, 2019. |
[39] | S. Somiya, Handbook of Advanced Ceramics: Materials, Applications, Process- ing, and Properties, Elsevier, Japan, 2013. |
[40] |
Y.Z. Zhu, Z.R. Huang, S.M. Dong, M. Yuan, D.L. Jiang, Mater. Charact. 59 (7)(2008) 975-978.
DOI URL |
[41] |
S.P. Lee, I.S. Son, J.K. Lee, D.S. Bae, J.H. Byun, Fusion Eng. Des. 87 (7-8) (2012) 1478-1482.
DOI URL |
[42] |
X.L. He, Y. Zhou, D.C. Jia, Y.K. Guo, Ceram. Int. 32 (8) (2006) 929-934.
DOI URL |
[43] |
J.L. Chen, K. Wang, Y. Zhao, Compos. Sci. Technol. 154 (2018) 175-186.
DOI URL |
[1] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
[2] | Yujie Ren, Xin Wang, Jiaxin Ma, Qi Zheng, Lianjun Wang, Wan Jiang. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation [J]. J. Mater. Sci. Technol., 2023, 132(0): 223-251. |
[3] | Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys [J]. J. Mater. Sci. Technol., 2023, 132(0): 27-41. |
[4] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[5] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
[6] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[7] | Lizhuang Yang, Bowen Pu, Xiang Zhang, Junwei Sha, Chunnian He, Naiqin Zhao. Manipulating mechanical properties of graphene/Al composites by an in-situ synthesized hybrid reinforcement strategy [J]. J. Mater. Sci. Technol., 2022, 123(0): 13-25. |
[8] | Bingjie Wang, Qianqian Wang, Nan Lu, Xiubing Liang, Baolong Shen. Enhanced high-temperature strength of HfNbTaTiZrV refractory high-entropy alloy via Al2O3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 123(0): 191-200. |
[9] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
[10] | Yingjie He, Hongyu Xu, Yang Liu, Yihan Chen, Zesheng Ji. Strengthening mechanism of B4C@APC/Al matrix composites reinforced with bimodal-sized particles prepared by hydrothermal carbonized deposition on chips [J]. J. Mater. Sci. Technol., 2022, 123(0): 60-69. |
[11] | Chao Liu, Reynier I. Revilla, Xuan Li, Zaihao Jiang, Shufeng Yang, Zhongyu Cui, Dawei Zhang, Herman Terryn, Xiaogang Li. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel [J]. J. Mater. Sci. Technol., 2022, 124(0): 141-149. |
[12] | Yonggang Fan, Kenan Li, Haodong Li, Cong Wang. Profiling interfacial reaction features between diamond and Cu-Sn-Ti active filler metal brazed at 1223 K [J]. J. Mater. Sci. Technol., 2022, 131(0): 100-105. |
[13] | Jiahao Li, Kejie Lu, Xiaojun Zhao, Xinkai Ma, Fuguo Li, Hongbo Pan, Jieming Chen. A superior strength-ductility synergy of Al0.1CrFeCoNi high-entropy alloy with fully recrystallized ultrafine grains and annealing twins [J]. J. Mater. Sci. Technol., 2022, 131(0): 185-194. |
[14] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[15] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||