J. Mater. Sci. Technol. ›› 2023, Vol. 134: 95-105.DOI: 10.1016/j.jmst.2022.06.033
• Research Article • Previous Articles Next Articles
Qiaolei Lia,b, Tianci Chena,c, Jingjing Liangb,d,*(), Chaowei Zhangb, Jinguo Lib,d,*(
), Yizhou Zhoub, Xiaofeng Sunb
Received:
2022-05-04
Revised:
2022-06-12
Accepted:
2022-06-15
Published:
2023-01-20
Online:
2023-01-10
Contact:
Jingjing Liang,Jinguo Li
About author:
jgli@imr.ac.cn (J. Li).Qiaolei Li, Tianci Chen, Jingjing Liang, Chaowei Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Manufacturing of ceramic cores: From hot injection to 3D printing[J]. J. Mater. Sci. Technol., 2023, 134: 95-105.
Fig. 4. Fracture surface morphology and elemental distribution analysis results of the hot injection (a-f) and vat photopolymerization 3D printed (g-l) ceramic core.
Fig. 7. Pore distribution of the hot injection (a, c, and e) and vat photopolymerization 3D printed (b, d, and f) ceramic cores characterized by industrial CT.
Fig. 8. TEM analysis results of the microstructure and elemental distribution between particles of the hot injection (a-e) and vat photopolymerization 3D printed (f-j) ceramic cores.
Fig. 9. Properties test results of the hot injection and vat photopolymerization 3D printed ceramic cores. (a) bending strength at 25 °C and 1500 °C, (b) sintering shrinkage rate, (c) open porosity, and (d) leaching rate.
Fig. 10. Fracture surface morphology and fracture mechanism diagram of the hot injection (a, c, and e) and 3D printed cores (b, d, and f) in the bending strength test. (a, b) fracture mechanism diagram, (c-f) fracture surface morphology.
[1] |
T.M. Pollock, Nat. Mater. 15 (2016) 809-815.
DOI PMID |
[2] |
D.G. Backman, J.C. Williams, Science 255 (1992) 1082-1087.
PMID |
[3] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
[4] |
J.E. Kanyo, S. Schafföer, R.S. Uwanyuze, K.S. Leary, J. Eur. Ceram. Soc. 40 (2020) 4955-4973.
DOI URL |
[5] |
Z.L. Lu, J.W. Cao, H. Jing, T. Liu, F. Lu, D.X. Wang, D.C. Li, Virtual Phys. Prototyp. 8 (2013) 87-95.
DOI URL |
[6] |
Z.X. Guo, Z. Song, J. Fan, X. Yan, D. Huang, Int. J. Fatigue 150 (2021) 106318.
DOI URL |
[7] | J.J. Liang, Q.H. Lin, X. Zhang, T. Jin, Y.Z. Zhou, X.F. Sun, B.G. Choi, I.S. Kim, J.H. Do, C.Y. Jo, J. Mater. Sci. Technol. 33 (2017) 204-209. |
[8] |
E.H. Kim, H.Y. Park, C. Lee, J.B. Park, S. Yang, Y.G. Jung, J. Mater. Res. Technol. 9 (2020) 3348-3356.
DOI URL |
[9] |
H.H. Wu, D.C. Li, Y.P. Tang, B. Sun, D.Y. Xu, Adv. Appl. Ceram. 108 (2009) 406-411.
DOI URL |
[10] |
Q.L. Li, X.L. An, J.J. Liang, Y.S. Liu, K.H. Hu, Z.G. Lu, X.Y. Yue, J.G. Li, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 104 (2022) 19-32.
DOI URL |
[11] |
Q.L. Li, J.J. Liang, Y.L. Zhang, J.G. Li, Y.Z. Zhou, X.F. Sun, Scr. Mater. 208 (2022) 114342.
DOI URL |
[12] |
H. Li, Y.S. Liu, Y.S. Liu, Q.F. Zeng, J. Wang, K.H. Hu, Z.G. Lu, J.J. Liang, J. Eur. Ceram. Soc. 40 (2020) 4825-4836.
DOI URL |
[13] |
H. Li, K.H. Hu, Y.S. Liu, Z.G. Lu, J.J. Liang, Scr. Mater. 194 (2021) 113665.
DOI URL |
[14] | B.H. Kear, E.R. Thompson, Science 208 (1980) 4446. |
[15] |
C.J. Bae, J.W. Halloran, Int. J. Appl. Ceram. Technol. 8 (2011) 1255-1262.
DOI URL |
[16] |
Y.X. Qin, W. Pan, Mater. Sci. Eng. A 508 (2009) 71-75.
DOI URL |
[17] |
S. Shabani, R. Naghizadeh, F. Golestanifard, M. Fallah Vostakola, E. Ghasemi, Int. J. Appl. Ceram. Technol. 16 (2019) 2409-2418.
DOI URL |
[18] |
Z.J. Zhao, Z.G. Yang, Z.H. Yu, M.J. Fan, J.Y. Bai, J.B. Yu, Z.M. Ren, Int. J. Appl. Ceram. Technol. 17 (2020) 685-694.
DOI URL |
[19] |
H. Li, Y.S. Liu, Y.S. Liu, Q.F. Zeng, J.J. Liang, J. Eur. Ceram. Soc. 41 (2021) 2938-2947.
DOI URL |
[20] |
A. Kazemi, M.A. Faghihi-Sani, M.J. Nayyeri, M. Mohammadi, M. Hajfathalian, Ceram. Int. 40 (2014) 1093-1098.
DOI URL |
[21] |
W.L. Zheng, X. Chen, C.Y. Liu, S.P. Ren, L. Zhang, Int. J. Appl. Ceram. Technol. 18 (2021) 1244-1254.
DOI URL |
[22] |
W.G. Jiang, K.W. Li, J.H. Xiao, L.H. Lou, J. Asian Ceram. Soc. 5 (2017) 410-417.
DOI URL |
[23] |
Z.L. Lu, Y.X. Fan, K. Miao, H. Jing, D.C. Li, Int. J. Adv. Manuf. Technol. 72 (2014) 873-880.
DOI URL |
[24] |
S.X. Niu, X.Q. Xu, X. Li, X. Chen, Y.S. Luo, J. Alloy. Compd. 829 (2020) 154494.
DOI URL |
[25] |
Z.G. Yang, J.B. Yu, C.J. Li, K. Deng, Z.M. Ren, J. Adhes. Sci. Technol. 30 (2016) 2667-2677.
DOI URL |
[26] |
F. Wang, F. Li, B. He, D.H. Wang, B.D. Sun, J. Eur. Ceram. Soc. 33 (2013) 2745-2749.
DOI URL |
[27] |
M. Gromada, A. S′wieca, M. Kostecki, A. Olszyna, R. Cygan, J. Mater. Process. Technol. 220 (2015) 107-112.
DOI URL |
[28] |
J. Jiang, X.Y. Liu, J. Mater. Process. Technol. 189 (2007) 247-255.
DOI URL |
[29] |
J. Zhang, W. Zheng, J.M. Wu, K.B. Yu, C.S. Ye, Y.S. Shi, Ceram. Int. 48 (2022) 1173-1180.
DOI URL |
[30] |
C.J. Bae, D. Kim, J.W. Halloran, J. Eur. Ceram. Soc. 39 (2019) 618-623.
DOI URL |
[31] | K.H. Hu, Y.M. Wei, Z.G. Lu, L.J. Wan, P. Li, 3D Print. Addit. Manuf. 5 (2018) 311-318. |
[32] |
K.Q. Zhang, C. Xie, G. Wang, R.J. He, G.J. Ding, M. Wang, D.W. Dai, D.N. Fang, Ceram. Int. 45 (2019) 203-220.
DOI URL |
[33] |
H.Y. Xing, B. Zou, Q.G. Lai, C.Z. Huang, Q.H. Chen, X.S. Fu, Z.Y. Shi, Powder Technol 338 (2018) 153-161.
DOI URL |
[34] |
K.H. Li, Z. Zhao, Ceram. Int. 43 (2017) 4761-4767.
DOI URL |
[35] |
C.C. Qian, K.H. Hu, J.H. Li, P.J. Li, Z.G. Lu, J. Eur. Ceram. Soc. 41 (2021) 7141-7154.
DOI URL |
[36] |
S.P. Gentry, J.W. Halloran, J. Eur. Ceram. Soc. 33 (2013) 1981-1988.
DOI URL |
[37] |
C.C. Qian, K.H. Hu, Z.G. Lu, P.J. Li, Mater. Chem. Phys. 267 (2021) 124661.
DOI URL |
[38] |
S.P. Gentry, J.W. Halloran, J. Eur. Ceram. Soc. 33 (2013) 1989-1994.
DOI URL |
[39] |
H. Li, Y.S. Liu, Y.S. Liu, Q.F. Zeng, K.H. Hu, Z.G. Lu, J.J. Liang, J. Manuf. Process. 57 (2020) 380-388.
DOI URL |
[40] |
H. Li, Y.S. Liu, Y.S. Liu, Q.F. Zeng, K.H. Hu, Z.G. Lu, J.J. Liang, J.G. Li, Ceram. Int. 47 (2021) 4884-4894.
DOI URL |
[41] |
D. An, W. Liu, Z.P. Xie, H.Z. Li, X.D. Luo, H.D. Wu, M.P. Huang, J.W. Liang, Z. Tian, R.X. He, J. Am. Ceram. Soc. 102 (2019) 2263-2271.
DOI URL |
[42] |
X.T. Chen, T.C. Lu, N. Wei, Z.W. Lu, L.J. Chen, Q.H. Zhang, G. Cheng, J.Q. Qi, J. Alloy. Compd. 653 (2015) 552-560.
DOI URL |
[43] |
E. Medvedovski, M. Peltsman, Adv. Appl. Ceram. 111 (2012) 333-344.
DOI URL |
[44] | Q.L. Li, X.T. Meng, X.C. Zhang, J.J. Liang, C.W. Zhang, J.G. Li, Y. Zhou, X. Sun, Addit. Manuf. 55 (2022) 102826. |
[45] |
R.C. Breneman, J.W. Halloran, J. Am. Ceram. Soc. 98 (2015) 1611-1617.
DOI URL |
[46] |
Q.L. Li, Y. Gu, X.H. Yu, C.W. Zhang, M.K. Zou, J.J. Liang, J.G. Li, J. Inorg. Mater. 37 (2022) 325-332.
DOI URL |
[47] | D. Zhao, H.J. Su, K.H. Hu, Z.G. Lu, X. Li, D. Dong, Y. Liu, Z.L. Shen, Y.N. Guo, H.F. Liu, G.R. Fan, J. Zhang, L. Liu, H.Z. Fu, Addit. Manuf. 52 (2022) 102650. |
[48] |
X.Q. Wu, C.J. Xu, Z.M. Zhang, C. Guo, Ceram. Int. 46 (2020) 25750-25757.
DOI URL |
[49] |
C. Manière, G. Kerbart, C. Harnois, S. Marinel, Acta Mater. 182 (2020) 163-171.
DOI URL |
[50] |
S. Liu, L.N. Mo, G.Y. Bi, S.G. Chen, D.W. Yan, J.Z. Yang, Y.G. Jia, L. Ren, Ceram. Int. 47 (2021) 21108-21116.
DOI URL |
[51] |
Y. Liu, L.J. Cheng, H. Li, Q. Li, Y. Shi, F. Liu, Q.M. Wu, S.J. Liu, Ceram. Int. 46 (2020) 14583-14590.
DOI URL |
[52] |
S. Zhang, N. Sha, Z. Zhao, J. Eur. Ceram. Soc. 37 (2017) 1607-1616.
DOI URL |
[53] |
J. Sun, J. Binner, J. Bai, J. Eur. Ceram. Soc. 39 (2019) 1660-1667.
DOI URL |
[54] |
P. Cai, L. Guo, H. Wang, J.M. Li, J.T. Li, Y.X. Qiu, Q.M. Zhang, Q.T. Lue, Ceram. Int. 46 (2020) 16833-16841.
DOI URL |
[1] | Kai Du, Shaohui Huang, Yong Hou, Haibo Wang, Yinxiao Wang, Wentao Zheng, Xiaoguang Yuan. Characterization of the asymmetric evolving yield and flow of 6016-T4 aluminum alloy and DP490 steel [J]. J. Mater. Sci. Technol., 2023, 133(0): 209-229. |
[2] | Jiayong Zhang, Hongwu Zhang, Qian Li, Lizi Cheng, Hongfei Ye, Yonggang Zheng, Jian Lu. The physical origin of observed repulsive forces between general dislocations and twin boundaries in FCC metals: An atom-continuum coupling study [J]. J. Mater. Sci. Technol., 2022, 109(0): 221-227. |
[3] | Qing Liu, Yi Zhang, Yibin Liu, Chunmei Li, Zongxu Liu, Baoliang Zhang, Qiuyu Zhang. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 246-259. |
[4] | Xiang Li, Haijun Su, Dong Dong, Di Zhao, Yuan Liu, Zhonglin Shen, Hao Jiang, Yinuo Guo, Haifang Liu, Guangrao Fan, Wenchao Yang, Taiwen Huang, Jun Zhang, Lin Liu, Hengzhi Fu. Enhanced comprehensive properties of stereolithography 3D printed alumina ceramic cores with high porosities by a powder gradation design [J]. J. Mater. Sci. Technol., 2022, 131(0): 264-275. |
[5] | Guo-Xiang Zhou, Zhe Zhao, Yan-zhao Zhang, Wen-jin Liu, Zhi-Hua Yang, De-Chang Jia, Yu Zhou. Printing and electromagnetic characteristics of 3D printing frequency selective surface using graphene [J]. J. Mater. Sci. Technol., 2022, 111(0): 49-56. |
[6] | W. Zheng, J.M. Wu, S. Chen, K.B. Yu, J. Zhang, Y.S. Shi. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography [J]. J. Mater. Sci. Technol., 2022, 116(0): 161-168. |
[7] | Mathias Aakyiir, Brayden Tanner, Pei Lay Yap, Hadi Rastin, Tran Thanh Tung, Dusan Losic, Qingshi Meng, Jun Ma. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors [J]. J. Mater. Sci. Technol., 2022, 117(0): 174-182. |
[8] | Jinguo Li, Xiaolong An, Jingjing Liang, Yizhou Zhou, Xiaofeng Sun. Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects [J]. J. Mater. Sci. Technol., 2022, 117(0): 79-98. |
[9] | Jianwen Ge, Yu Cui, Jiaxin Qian, Li Liu, Fandi Meng, Fuhui Wang. Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 24-35. |
[10] | X.L. An, J.J. Liang, J.G. Li, J.W. Chen, Y.Z. Zhou, X.F. Sun. Sample selection for models to represent ceramic cores fabricated by stereolithography three-dimensional printing [J]. J. Mater. Sci. Technol., 2022, 121(0): 117-123. |
[11] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[12] | Amy X.Y. Guo, Liangjie Cheng, Shuai Zhan, Shouyang Zhang, Wei Xiong, Zihan Wang, Gang Wang, Shan Cecilia Cao. Biomedical applications of the powder‐based 3D printed titanium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 125(0): 252-264. |
[13] | Yiping Lu, Xiaoxiang Wu, Zhenghong Fu, Qiankun Yang, Yong Zhang, Qiming Liu, Tianxin Li, Yanzhong Tian, Hua Tan, Zhiming Li, Tongmin Wang, Tingju Li. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing [J]. J. Mater. Sci. Technol., 2022, 126(0): 15-21. |
[14] | Xinyuan Lv, Fang Ye, Laifei Cheng, Litong Zhang. 3D printing “wire-on-sphere” hierarchical SiC nanowires / SiC whiskers foam for efficient high-temperature electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 109(0): 94-104. |
[15] | Zeya Xu, Bin Lin, Chaoqian Zhao, Yanjin Lu, Tingting Huang, Yan Chen, Jungang Li, Rongcan Wu, Wenge Liu, Jinxin Lin. Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering [J]. J. Mater. Sci. Technol., 2022, 118(0): 229-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||