J. Mater. Sci. Technol. ›› 2023, Vol. 134: 197-208.DOI: 10.1016/j.jmst.2022.06.029
• Research Article • Previous Articles Next Articles
Miao Songa,1,*(), Jia Liub, Xiaolong Mab, Qin Panga, Matthew J. Olsztab, Joshua Silversteinb, Madhusudhan R. Pallakab, Peter V. Sushkoa, Suveen N. Mathaudhub,c,d, Cynthia Powellb, Arun Devarja, Bharat Gwalania,e,*(
)
Received:
2022-04-25
Revised:
2022-06-09
Accepted:
2022-06-12
Published:
2023-01-20
Online:
2023-01-10
Contact:
Miao Song,Bharat Gwalani
About author:
bharat.gwalani@pnnl.gov, bgwalan@ncsu.edu (B. Gwalani).1 Present address: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Miao Song, Jia Liu, Xiaolong Ma, Qin Pang, Matthew J. Olszta, Joshua Silverstein, Madhusudhan R. Pallaka, Peter V. Sushko, Suveen N. Mathaudhu, Cynthia Powell, Arun Devarj, Bharat Gwalani. Mass transport in a highly immiscible alloy on extended shear deformation[J]. J. Mater. Sci. Technol., 2023, 134: 197-208.
Fig. 1. Tribometer test and calculation of plastic shear strain (PSS). (a) Coefficient of friction (COF)-time curve recorded by the instrument (COF is estimated to be 0.6). (b) Wear track from the top view. The directions along the sliding direction, normal to the sliding surface, and perpendicular to the sliding direction are defined as SD, ND, and TD, respectively. (c) Relationship between the equivalent PSS (ε) and distance from the scratch surface after 10 cycles of shear deformation. Scale bars in (c) are 200 nm.
Fig. 2. Microstructure of the Cu-50 at.% Cr binary alloy before deformation. (a) Scanning electron microscopy back scattered electrons (SEM-BSE) image and EDS mapping showing Cr dendritic grains distributed in the Cu matrix. (b) HAADF-STEM image and EDS mapping showing profuse Cu NPs in a Cr grain. (c) 3D atomic map showing the Cu/Cr interface highlighted with 15 at.% Cu isoconcentration surface. (d) Compositional change across the Cu/Cr interface.
Fig. 3. Orientation relationship between Cu and Cr. (a) Inverse pole figure (IPF) of the Cu-50 at.% Cr binary alloy. Inset comes from the enlarged, yellow-boxed area. (b, d) HR-TEM images of two Cu/Cr interfaces. (c, e) Fast Fourier transform (FFT) images of corresponding locations in (b) and (d), showing N-W and K-S relations, respectively. The Cu/Cr interfaces are roughly outlined by yellow dashed lines. Notably, there is a slight overlap between the Cu particle and the surrounding Cr matrix in (b).
Fig. 4. Microstructures after 10 cycles of severe shear deformation. (a) ABF-STEM image. Inset red boxes show the estimated PSS. (b) HAADF-STEM image and EDS mapping. (c) HAADF-STEM image of the yellow-boxed area in (a) and EDS mapping. (d) Grain sizes evolution of Cu and Cr phases as a function of the distance from the scratch surface. (e, h) Combined images of phases and HAADF-STEM images of the blue-boxed area in (c) and orange-boxed area in (a), respectively, acquired by precession electron diffraction. (f, i) IPFs of areas (e) and (h), respectively. (g, j) Misorientation along lines 1 and 2 in (f) and lines 3 and 4 in (i), respectively.
Fig. 5. Defects in Cu and Cr grains in the top-most layers after 10 cycles of severe shear deformation. (a) BF-TEM image showing the formation of twin lamellae and stacking faults in a Cu grain. (b) HAADF-STEM image of the white-boxed area in (a). (c) ABF-STEM image of a Cr lamella (outlined by the white dashed line). (d) HAADF-STEM image of the white-boxed area in (c). Dislocations are denoted by “┴”. (e) BF-TEM image showing many low-angle GBs in Cr and two Cu NPs at Cr GBs. All Cr grains outlined by cyan dashed lines in (e) were aligned close to the [001] zone axis. Misorientation angles between two adjacent Cr grains are labeled on GBs.
Fig. 6. Microstructure of the Cu/Cr binary alloy after half cycle severe shear deformation. (a) HAADF-STEM image showing the formation of profuse dislocations and sub-grains (denoted by white arrows) in the Cu matrix. (b) EDS mapping. (c) Annular bright-field (ABF) STEM image showing a gradient dislocation density distribution in the Cr grain in (a). (d) ABF-STEM of the enlarged white boxed area in (c). (e) Enlarged yellow-boxed area in (d). (f) HAADF-STEM image and EDS mapping of the enlarged white-box in (a). (g, h) High-magnification HAADF-STEM images showing black contrast areas (denoted by orange arrows) on the side of the Cu grain by tilting the Cr and Cu grains to [113] and [111] zone axes, respectively.
Fig. 7. Evolution of Cr lamellae in the Cu matrix after 10 cycles of severe shear deformation. (a) HAADF-STEM image showing the formation of many separated Cr lamellae (denoted by cyan arrows) and particles (denoted by red arrows) in the top surface of the Cu matrix. (b) EDS line scan along line 1 in (a). (c) BF-TEM image of the enlarged white box in (a) showing grain refinement of the Cr lamella. GBs in the Cr lamella and the surrounding Cu matrix are roughly outlined by cyan and orange dashed lines, respectively. The Cu/Cr interface is outlined by a white dashed line. (d) HR-TEM image of the white-boxed area in (c). (e) BF-TEM image of a Cr lamella. (f) FFT images of different locations in (e) verify that the Cr lamella is a single crystal. (g) HR-TEM images of locations 1 and 3 in (e) further verify the formation of the single-crystal Cr lamella. (h) ABF-TEM image showing the formation of two single-crystal Cr lamellae in the Cu matrix. (i) Variation of aspect ratio and length of the Cr lamella with the distance below the scratch surface.
Fig. 8. Formation of Cr lamellae in the Cu matrix after 10 cycles of severe shear deformation. (a) BF-TEM image showing the formation of Cr lamellae in the Cu matrix in the ND-TD sample. The image was acquired from ~400 nm below the scratch surface. (b) Enlarged white boxed area in (a) showing formation of LAGBs in a Cr grain. (c) HR-TEM image of the white-boxed area in (b) showing lattice rotation on both sides of the LAGBs. α and β are tilt angles of the TEM holder. (d) FFT image of (c). (e) HR-TEM image of the green-boxed area in (b). (f) Enlarged yellow-boxed area in (e). (g) Enlarged white-boxed area in (e) showing profuse dislocations along the LAGB. Dislocations are denoted by “┴”. (h) HAADF-STEM image showing the formation of many Cr lamellae at the top-surface (~100 nm below) of a Cr block. (i) Schematic illustration showing the formation process of Cr lamellae in the Cu matrix.
Fig. 9. Alloying analysis by atom probe tomography (APT) after 10 cycles of shear deformation. (a) APT reconstruction of two Cu NPs in the Cr. (b) 2-D contour plot highlighting the Cu concentration variation from a 2 nm (top) and 10 nm (bottom) slice. (c) Compositional change along the white arrow in (b). (d) 3-D isoconcentration surfaces of the Cu NP 2 in (a). 3 at.% (purple) and 15 at.% (yellow) Cu isoconcentration surfaces are displayed here to delineate the boundaries between Cu and Cr. (e, h) APT reconstruction of Cr nanograins in Cu. (f, i) 2-D contour plot highlighting the Cr concentration variation of Cr nanograins in (e) and (h), respectively. (g) 2-D contour plot highlighting the O concentration variation. (j-l) Compositional change along with white arrows 2-4, respectively. Notably, (a), (e), and (h) come from 50 nm, ~120 nm, and ~50 nm below the scratch surface, respectively.
Fig. 10. Refinement of Cu NPs in the Cr matrix after 10 cycles of severe shear deformation. (a) HR-TEM image of a Cu particle in the Cr matrix (~2.9 μm below the scratch surface). The Cu/Cr interface is roughly outlined by yellow dashed lines. (b) FFT image of (a) showing the Cu particle maintains the N-W relation with the surrounding Cu matrix. (c) Enlarged white-boxed area in (a) showing the formation of a Cu domain in the original Cu NP. (d) Inverse FFT image of the selected diffraction spots [denoted by red circles in (b)] showing the formation of many Cu domains in the original Cu particle. (e) Enlarged white-boxed area in (d).
Fig. 11. Oxidization of various Cu/Cr interfaces simulated by Ab initio method. (a) Stability of interstitial O (Oi) at the coherent (Model A) and incoherent (Model B, C) Cu/Cr interfaces (see also Fig. S11) and in the pure bulk Cu and Cr. (b, c) Atomic charge distribution at the Cu/Cr interfaces (b) and in the presence of Oi (within 3 ? from Oi) (c). The configurations of Model B and C chosen to show charge distribution in panel c are the ones with lower energy in panel a.
[1] |
H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson, Metall. Trans. A 21 (1990) 2333-2337.
DOI URL |
[2] |
V.M. Segal, Mater. Sci. Eng. A 271 (1999) 322-333.
DOI URL |
[3] |
M. Zelin, Acta Mater. 50 (2002) 4431-4447.
DOI URL |
[4] |
A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893-979.
DOI URL |
[5] |
Z.Y. Ma, Metall. Mater. Trans. A 39 (2008) 642-658.
DOI URL |
[6] |
B. Gwalani, M. Olszta, S. Varma, L. Li, A. Soulami, E. Kautz, S. Pathak, A. Ro-hatgi, P.V. Sushko, S. Mathaudhu, C.A. Powell, A. Devaraj, Commun. Mater. 1 (2020) 85.
DOI URL |
[7] |
E. Ma, Prog. Mater. Sci. 50 (2005) 413-509.
DOI URL |
[8] |
M. Pouryazdan, B.J.P. Kaus, A. Rack, A. Ershov, H. Hahn, Nat. Commun. 8 (2017) 1611.
DOI PMID |
[9] |
D. Raabe, S. Ohsaki, K. Hono, Acta Mater. 57 (2009) 5254-5263.
DOI URL |
[10] |
M. Wang, R.S. Averback, P. Bellon, S. Dillon, Acta Mater. 62 (2014) 276-285.
DOI URL |
[11] |
S. Odunuga, Y. Li, P. Krasnochtchekov, P. Bellon, R.S. Averback, Phys. Rev. Lett. 95 (2005) 045901.
DOI URL |
[12] |
E. Botcharova, J. Freudenberger, L. Schultz, J. Mater. Sci. 39 (2004) 5287-5290.
DOI URL |
[13] |
E. Ma, J.H. He, P.J. Schilling, Phys. Rev. B 55 (1997) 5542-5545.
DOI URL |
[14] |
J. Xu, U. Herr, T. Klassen, R.S. Averback, J. Appl. Phys. 79 (1996) 3935-3945.
DOI URL |
[15] |
Y. Ashkenazy, N.Q. Vo, D. Schwen, R.S. Averback, P. Bellon, Acta Mater. 60 (2012) 984-993.
DOI URL |
[16] |
E. Ma, H.W. Sheng, J.H. He, P.J. Schilling, Mater. Sci. Eng. A 286 (2000) 48-57.
DOI URL |
[17] |
J. Eckert, J.C. Holzer, C.E. Krill, W.L. Johnson, J. Appl. Phys. 73 (1993) 2794-2802.
DOI URL |
[18] |
T.D. Shen, K.Y. Wang, M.X. Quan, J.T. Wang, Mater. Sci. Forum 88-90 (1992) 391-398.
DOI URL |
[19] |
A.R. Yavari, P.J. Desré, T. Benameur, Phys. Rev. Lett. 68 (1992) 2235-2238.
PMID |
[20] |
X. Sauvage, P. Jessner, F. Vurpillot, R. Pippan, Scr. Mater. 58 (2008) 1125-1128.
DOI URL |
[21] |
C.W. Sinclair, J.D. Embury, G.C. Weatherly, Mater. Sci. Eng. A 272 (1999) 90-98.
DOI URL |
[22] |
Q. Mao, Y. Zhang, Y. Guo, Y. Zhao, Commun. Mater. 2 (2021) 46.
DOI URL |
[23] |
X. Yang, D. Shen, H. Zhang, W. Tong, Vacuum 146 (2017) 225-232.
DOI URL |
[24] |
A. Chbihi, X. Sauvage, D. Blavette, Acta Mater. 60 (2012) 4575-4585.
DOI URL |
[25] |
J.H. Dautzenberg, J.H. Zaat, Wear 23 (1973) 9-19.
DOI URL |
[26] |
G. Kresse, J. Furthmüller, Phys. Rev. B-Condens Matter 54 (1996) 11169-11186.
DOI URL |
[27] | G. Kresse, J. Hafner, Phys. Rev. B-Condens Matter 47 (1993) 558-561. |
[28] | P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) 864-871. |
[29] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[30] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396. |
[31] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[32] |
G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36 (2006) 354-360.
DOI URL |
[33] |
S. Wang, S. Han, G. Xin, J. Lin, R. Wei, J. Lian, K. Sun, X. Zu, Q. Yu, Mater. Des. 139 (2018) 181-187.
DOI URL |
[34] |
M.G. Hall, H.I. Aaronson, K.R. Kinsma, Surf. Sci. 31 (1972) 257-274.
DOI URL |
[35] |
M.G. Hall, H.I. Aaronson, Acta Metall. 34 (1986) 1409-1418.
DOI URL |
[36] |
T. Fujii, H. Nakazawa, M. Kato, U. Dahmen, Acta Mater. 48 (2000) 1033-1045.
DOI URL |
[37] |
Z.C. Cordero, C.A. Schuh, Acta Mater. 82 (2015) 123-136.
DOI URL |
[38] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207.
DOI URL |
[39] |
K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548-574.
DOI URL |
[40] |
J. Ribbe, D. Baither, G. Schmitz, S.V. Divinski, Phys. Rev. Lett. 102 (2009) 165501.
DOI URL |
[41] |
K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54 (2006) 5281-5291.
DOI URL |
[42] |
G. Yang, K. Du, D. Xu, H. Xie, W. Li, D. Liu, Y. Qi, H. Ye, Acta Mater. 152 (2018) 269-277.
DOI URL |
[43] |
C.R. Weinberger, B.L. Boyce, C.C. Battaile, Int. Mater. Rev. 58 (2013) 296-314.
DOI URL |
[44] |
M.R. Gilbert, S. Queyreau, J. Marian, Phys. Rev. B 84 (2011) 174103.
DOI URL |
[45] |
C. Marichal, H. Van Swygenhoven, S. Van Petegem, C. Borca, Sci. Rep. 3 (2013) 2547.
DOI PMID |
[46] |
M. Yamaguchi, V. Vitek, J. Phys. F: Met. Phys. 3 (1973) 523-536.
DOI URL |
[47] |
T.C. Kaspar, Q. Pang, P.V. Sushko, M.E. Bowden, J. Tao, B. Gwalani, M. Olszta, M. Efe, A. Devaraj, A. Rohatgi, Scr. Mater. 194 (2021) 113635.
DOI URL |
[48] |
N.Q. Vo, J. Zhou, Y. Ashkenazy, D. Schwen, R.S. Averback, P. Bellon, JOM 65 (2013) 382-389.
DOI URL |
[49] |
C.P. Brittain, R.W. Armstrong, G.C. Smith, Scr. Metall. 19 (1985) 89-91.
DOI URL |
[50] |
V. Provenzano, R. Valiev, D.G. Rickerby, G. Valdre, Nanostruct. Mater. 12 (1999) 1103-1108.
DOI URL |
[51] |
D. Wu, J. Zhang, J.C. Huang, H. Bei, T.G. Nieh, Scr. Mater. 68 (2013) 118-121.
DOI URL |
[52] |
J. Chen, L. Lu, K. Lu, Scr. Mater. 54 (2006) 1913-1918.
DOI URL |
[1] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[2] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[3] | Yixuan He, Fan Bu, Yuhao Wu, Jianbao Zhang, Dawei Luo, Zhangchi Bian, Qing Zhou, Tie Liu, Qiang Wang, Jun Wang, Haifeng Wang, Jinshan Li, Eric Beaugnon. Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field [J]. J. Mater. Sci. Technol., 2022, 116(0): 58-71. |
[4] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[5] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[6] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[7] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[8] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[9] | Xubing Wei, Shaomiao Shi, Chuangming Ning, Zhibin Lu, Guangan Zhang. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application [J]. J. Mater. Sci. Technol., 2022, 109(0): 114-128. |
[10] | S.A. Beknalkar, A.M. Teli, T.S. Bhat, K.K. Pawar, S.S. Patil, N.S. Harale, J.C. Shin, P.S. Patil. Mn3O4 based materials for electrochemical supercapacitors: Basic principles, charge storage mechanism, progress, and perspectives [J]. J. Mater. Sci. Technol., 2022, 130(0): 227-248. |
[11] | Youfang Cao, Longtao Jiang, Deng Gong, Guoqin Chen, Ziyang Xiu, Yangming Cheng, Xiufang Wang, Gaohui Wu. Quantitative study of dimensional stability mechanism and microstructure evolution during precipitation process of 2024Al alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 85-94. |
[12] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[13] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[14] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[15] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||