J. Mater. Sci. Technol. ›› 2022, Vol. 131: 91-99.DOI: 10.1016/j.jmst.2022.05.019
• Research Article • Previous Articles Next Articles
Jiahong Tiana, Runhua Fana, Zheng Zhangb, Yang Lic, Haikun Wuc,d,*(), Pengtao Yanga, Peitao Xiee, Wenxin Duana, Chun-Sing Leec
Received:
2022-02-28
Revised:
2022-05-02
Accepted:
2022-05-10
Published:
2022-06-08
Online:
2022-06-08
Contact:
Haikun Wu
About author:
*Department of Chemistry, City University of Hong Kong, Hong Kong, China. E-mail address: haikunwu2-c@my.cityu.edu.hk (H. Wu)Jiahong Tian, Runhua Fan, Zheng Zhang, Yang Li, Haikun Wu, Pengtao Yang, Peitao Xie, Wenxin Duan, Chun-Sing Lee. Flexible and biocompatible poly (vinyl alcohol)/multi-walled carbon nanotubes hydrogels with epsilon-near-zero properties[J]. J. Mater. Sci. Technol., 2022, 131: 91-99.
Fig. 2. (a) Photograph of PVA/MWCNTs hydrogel with MWCNTs content of 15 wt%. The SEM images of pure PVA hydrogel (b) and PVA/MWCNTs hydrogels with MWCNTs content of 3 wt% (c), 6 wt% (d, e), 9 wt% (f), 12 wt% (g, h) and 15 wt% (i).
Fig. 5. (a(f) Growth status of mouse pre-osteoblast MC3T3-E1 incubated in media containing hydrogels with different MWCNTs content from 0 to 15 wt% for 72 h, respectively. (g) Cell viability in media containing hydrogels with different MWCNTs content.
Fig. 6. Real permittivity (?′) spectra for the PVA/MWCNTs hydrogels with different content of MWCNTs from 0 wt% to 9 (a) and from 12 wt% to 15 wt% (b).
Composite | Filler | Filler content | Transition frequency | Ref. |
---|---|---|---|---|
La1-xSrxMnO3 | Sr2+ | x = 0.5 | ∼ 15 MHz | [ |
BaTiO3/Cu | Cu | 6.9 vol.% | ∼ 50 MHz | [ |
PDMS/carbon coated iron | carbon coated iron | 20 wt% | ∼ 10 MHz | [ |
BiFeO3/Bi2Fe4O9 | BiFeO3 | 52.5 mol% | ∼ 900 MHz | [ |
BaTiO3/Y3Fe5O12 | Y3Fe5O12 | 15 mol% | ∼ 750 MHz | [ |
BaTiO3/Ni | Ni | 6.98 vol.% | ∼ 900 MHz | [ |
PVA/MWCNTs | MWCNTs | 12 wt% | ∼ 760 kHz | This work |
Table. 1. Transition frequency of permittivity from positive to negative.
Composite | Filler | Filler content | Transition frequency | Ref. |
---|---|---|---|---|
La1-xSrxMnO3 | Sr2+ | x = 0.5 | ∼ 15 MHz | [ |
BaTiO3/Cu | Cu | 6.9 vol.% | ∼ 50 MHz | [ |
PDMS/carbon coated iron | carbon coated iron | 20 wt% | ∼ 10 MHz | [ |
BiFeO3/Bi2Fe4O9 | BiFeO3 | 52.5 mol% | ∼ 900 MHz | [ |
BaTiO3/Y3Fe5O12 | Y3Fe5O12 | 15 mol% | ∼ 750 MHz | [ |
BaTiO3/Ni | Ni | 6.98 vol.% | ∼ 900 MHz | [ |
PVA/MWCNTs | MWCNTs | 12 wt% | ∼ 760 kHz | This work |
Fig. 8. (a) Alternating current conductivity (σac) spectra of PVA/MWCNTs hydrogels with different content of MWCNTs. (b) Dependence of electrical conductivity on MWCNTs content.
Fig. 9. Dependence of impedance on frequency for PVA/MWCNTs hydrogels. Impedance spectra of PVA/MWCNTs hydrogels below (a) and above (b) the percolation threshold, respectively.
[1] |
D. Smith, W. Padilla, D. Vier, S. Nasser, S. Schultz, Phys. Rev. Lett. 84 (20 0 0) 4184-4187.
DOI URL |
[2] |
N. Yu, F. Aieta, P. Genevet, M. Kats, Z. Gaburro, F. Capasso, Nano Lett. 12 (2012) 6328-6333.
DOI URL |
[3] |
I. Liberal, N. Engheta, Science 358 (2017) 1540-1541.
DOI PMID |
[4] |
X. Huang, Y. Lai, Z. Hang, H. Zheng, C. Chan, Nat. Mater. 10 (2011) 582-586.
DOI URL |
[5] |
A. Poddubny, I. Iorsh, P. Belov, V. Kivshar, Nat. Photonics 7 (2013) 948-957.
DOI URL |
[6] | E. Cubukcu, S. Zhang, Y. Park, G. Bartal, X. Zhang, Appl. Phys. Lett. 95 (2009) 043113. |
[7] | H. Bai, Z. Zhang, Y. Huo, Y. Shen, M. Qin, W. Feng, J. Mater. Sci. Technol. 98 (2022) 167-176. |
[8] | J. Tong, F. Suo, J. Ma, L. Tobing, L. Qian, D. Zhang, Opto Electron. Adv. 2 (2019) 180026. |
[9] |
H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai, M. Qin, W. Feng, Carbon 179 (2021) 348-357 N Y.
DOI URL |
[10] |
R. Maas, J. Parsons, N. Engheta, A. Polman, Nat. Photonics 7 (2013) 907-912.
DOI URL |
[11] | P. Dyachenko, S. Molesky, A. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich, Nat. Commun. 7 (2016) 1-8. |
[12] | P. Yu, L. Besteiro, Y. Huang, Adv. Opt. Mater. 7 (2019) 1800995. |
[13] |
V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, R. Krahne, Nano Lett. 19 (2019) 3151-3160.
DOI PMID |
[14] | X. Niu, X. Hu, S. Chu, Q. Gong, Adv. Opt. Mater. 6 (2018) 1701292. |
[15] | W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, E. Gorecka, Nat. Commun. 6 (2015) 1-9. |
[16] | A. Alu, M. Silveirinha, A. Salandrino, N. Engheta, Phys. Rev. B 75 (2007) 155410. |
[17] | D. George, A. Chandroth, C. Ng, P. Young, J. Phys. D 51 (2018) 135102. |
[18] | Y. Li, C. Argyropoulos, Phys. Rev. B 99 (2019) 075413. |
[19] | G. Lio, A. Ferraro, M. Giocondo, R. Caputo, A. Luca, Adv. Opt. Mater. 8 (2020) 2000487. |
[20] |
C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Nanoscale 9 (2017) 5779-5787.
DOI URL |
[21] |
F. Jamshaid, R. Khan, A. Islam, A. Ahmad, M. Adrees, R. Dilshad, Iran. Polym. J. 29 (2020) 875-889.
DOI URL |
[22] | H. Khosravi, R. Eslami-Farsani, Polym. Compos. 39 (2018) 677-686. |
[23] |
M. Islam, M. Rahman, T. Mieno, Adv. Compos. Hybrid Mater. 3 (2020) 285-293.
DOI URL |
[24] |
S. Mirabootalebi, Adv. Compos. Hybrid Mater. 3 (2020) 336-343.
DOI URL |
[25] |
M. Hisham, M. Abdeen, Adv. Compos. Hybrid Mater. 3 (2020) 375-389.
DOI URL |
[26] |
M. Farahmandian, M. Saidi, S. Fazlinejad, Adv. Compos. Hybrid Mater. 5 (2022) 1490-1507.
DOI URL |
[27] |
P. Wang, L. Yang, S. Gao, X. Chen, T. Cao, C. Wang, H. Liu, X. Hu, X. Wu, S. Feng, Adv. Compos. Hybrid Mater. 4 (2021) 639-646.
DOI URL |
[28] |
H. Zamani, Adv. Compos. Hybrid Mater. 4 (2021) 830-844.
DOI URL |
[29] |
S. Suresh, D. Sudhakara, B. Vinod, Adv. Compos. Hybrid Mater. 3 (2020) 243-254.
DOI URL |
[30] |
S. Joshi, Adv. Compos. Hybrid Mater. 3 (2020) 354-364.
DOI URL |
[31] |
S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu, F. Hou, J. Ni, C. Zhu, T. Li, Y. Wang, V. Murugadoss, G. Mersal, M. Ibrahim, Z. Bahy, M. Huang, Z. Guo, J. Mater. Sci. Technol. 126 (2022) 152-160.
DOI URL |
[32] |
X. Jing, Y. Li, J. Zhu, L. Chang, S. Maganti, N. Naik, B. Xu, V. Murugadoss, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. 5 (2022) 1090-1099.
DOI URL |
[33] |
P. Liu, W. Chen, C. Liu, M. Tian, P. Liu, Sci. Rep. 9 (2019) 1-12.
DOI URL |
[34] |
G. Fan, Z. Wang, K. Sun, Y. Liu, R. Fan, J. Mater. Sci. Technol. 61 (2021) 125-131.
DOI URL |
[35] |
K. Sun, J. Xin, Y. Li, Z. Wang, Q. Hou, X. Li, J. Mater. Sci. Technol. 35 (2019) 2463-2469.
DOI |
[36] |
R. Atchudan, A. Pandurangan, J. Joo, J. Nanosci. Nanotechnol. 15 (2015) 4255-4267.
PMID |
[37] |
M. Gomaa, C. Hugenschmidt, M. Dickmann, E. Abdel-Hady, H. Mohamed, M. Abdel-Hamed, Phys. Chem. Chem. Phys. 20 (2018) 28287-28299.
DOI URL |
[38] |
P. Hu, M. Jia, Y. Zuo, L. He, RSC Adv. 7 (2017) 2450-2459.
DOI URL |
[39] |
T. Liu, C. Jiao, X. Peng, Y. Chen, Y. Chen, C. He, R. Liu, H. Wang, J. Mater. Chem. B 6 (2018) 8105-8114.
DOI URL |
[40] | Z. Kolarova, P. Stahel, J. Sedlarikova, L. Musilova, M. Stupavska, M. Lehocky, Materials (Basel) 11 (2018) 1451 (Basel). |
[41] |
O. Park, J. Lee, Compos. B Eng. 144 (2018) 229-236.
DOI URL |
[42] |
K. Sun, R. Fan, Y. Yin, J. Guo, X. Li, Y. Lei, L. An, C. Cheng, Z. Guo, J. Phys. Chem. C 121 (2017) 7564-7571.
DOI URL |
[43] |
X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H. Gu, J. Yu, J. Liu, D. Ding, L. Sun, S. Wei, Z. Guo, ACS Appl. Mater. Interfaces 7 (2015) 6125-6138.
DOI URL |
[44] | S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, S. Brueck, Phys. Rev. Lett. 95 (2005) 137404. |
[45] | K. Sun, W. Duan, Y. Lei, Z. Wang, J. Tian, P. Yang, Q. He, M. Chen, H. Wu, Z. Zhang, R. Fan, Compos. Part A-Appl. Sci. Manuf. 156 (2022) 106854. |
[46] |
S. Nagel, S. Schnatterly, Phys. Rev. B 9 (1974) 1299.
DOI URL |
[47] | C. Cheng, Y. Jiang, X. Sun, J. Shen, T. Wang, G. Fan, R. Fan, Compos. Part A-Appl. Sci. Manuf. 130 (2020) 105753. |
[48] |
Z. Wang, P. Xie, G. Fan, Z. Zhang, Y. Liu, Q. Gu, R. Fan, Ceram. Int. 46 (2020) 9342-9346.
DOI URL |
[49] |
B. Li, G. Sui, W. Zhong, Adv. Mater. 21 (2009) 4176-4180.
DOI URL |
[50] |
R. Kohlman, J. Joo, Y. Wang, J. Pouget, H. Kaneko, T. Ishiguro, A. Epstein, Phys. Rev. Lett. 74 (1995) 773.
PMID |
[51] |
H. Shetty, V. Prasad, Mater. Chem. Phys. 196 (2017) 153-159.
DOI URL |
[52] |
K. Sun, P. Yang, Q. He, R. Fan, Z. Wang, J. Tian, X. Yang, W. Duan, X. Wu, Z. Wang, Ceram. Int. 48 (2022) 8417-8422.
DOI URL |
[53] | Z. Wang, K. Sun, P. Xie, Y. Liu, Q. Gu, R. Fan, J. Wang, J. Mater. 6 (2020) 145-151. |
[54] |
H. Shetty, V. Prasad, Mater. Chem. Phys. 196 (2017) 153-159.
DOI URL |
[55] |
Q. Li, S. Bao, Y. Sun, J. Li, Z. Yu, Y. Li, S. Zhang, Y. Liu, Z. Cheng, J. Alloy. Compd. 735 (2018) 2081-2086.
DOI URL |
[56] | Z. Wang, K. Sun, P. Xie, Y. Liu, R. Fan, J. Phys. Condens. Matter 29 (2017) 365703. |
[57] |
Z. Wang, K. Sun, P. Xie, Q. Hou, Y. Liu, Q. Gu, R. Fan, Acta Mater. 185 (2020) 412-419.
DOI URL |
[58] |
K. Sun, J. Xin, Z. Wang, S. Feng, Z. Wang, R. Fan, H. Liu, Z. Guo, J. Mater. Sci. Mater. Electron. 30 (2019) 14745-14754.
DOI URL |
[59] |
Z. Dang, Y. Lin, C. Nan, Adv. Mater. 15 (2003) 1625-1629.
DOI URL |
[60] |
Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Adv. Mater. 24 (2012) 2349-2352.
DOI URL |
[61] | Z. Yu, Z. Yan, F. Zhang, J. Wang, Q. Shao, V. Murugadoss, A. Alhadhrami, G. Mer-sal, M. Ibrahim, Z. Bahy, Y. Li, M. Huang, Z. Guo, Prog. Org. Coat. 168 (2022) 106875. |
[62] |
D. Pan, G. Yang, H. Dief, J. Dong, F. Su, C. Liu, Y. Li, B. Xu, V. Murugadoss, N. Naik, S. Bahy, Z. Bahy, M. Huang, Z. Guo, Nano Micro Lett. 14 (2022) 108.
DOI URL |
[1] | Zaixin Wei, Zhongyang Wang, Ciqun Xu, Guohua Fan, Xiaoting Song, Yao Liu, Runhua Fan. Defect-induced insulator-metal transition and negative permittivity in La1-xBaxCoO3 perovskite structure [J]. J. Mater. Sci. Technol., 2022, 112(0): 77-84. |
[2] | Tao Xiang, Peng Du, Zeyun Cai, Kun Li, Weizong Bao, Xinxin Yang, Guoqiang Xie. Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials [J]. J. Mater. Sci. Technol., 2022, 117(0): 196-206. |
[3] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[4] | Jiang Guo, Xu Li, Zhuoran Chen, Jianfeng Zhu, Xianmin Mai, Renbo Wei, Kai Sun, Hu Liu, Yunxia Chen, Nithesh Naik, Zhanhu Guo. Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 64-72. |
[5] | Zhongjie Li, Jiajun Qiu, Hao Xu, Anping Dong, Lin He, Guoliang Zhu, Dafan Du, Hui Xing, Xuanyong Liu, Baode Sun. Characteristics of β-type Ti-41Nb alloy produced by laser powder bed fusion: Microstructure, mechanical properties and in vitro biocompatibility [J]. J. Mater. Sci. Technol., 2022, 124(0): 260-272. |
[6] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[7] | Guohua Fan, Zhongyang Wang, Kai Sun, Yao Liu, Runhua Fan. Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions [J]. J. Mater. Sci. Technol., 2021, 61(0): 125-131. |
[8] | Ling Ren, Xiaohe Xu, Hui Liu, Ke Yang, Xun Qi. Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys [J]. J. Mater. Sci. Technol., 2021, 95(0): 237-248. |
[9] | Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels [J]. J. Mater. Sci. Technol., 2021, 63(0): 1-8. |
[10] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[11] | Yifei Wang, Jing Zhang, Kangmei Li, Jun Hu. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser [J]. J. Mater. Sci. Technol., 2021, 94(0): 136-146. |
[12] | Kai Chen, Xuenan Gu, Hui Sun, Hongyan Tang, Hongtao Yang, Xianghui Gong, Yubo Fan. Fluid-induced corrosion behavior of degradable zinc for stent application [J]. J. Mater. Sci. Technol., 2021, 91(0): 134-147. |
[13] | Tian Wan, Kangjie Chu, Ju Fang, Chuanxin Zhong, Yiwen Zhang, Xiang Ge, Yonghui Ding, Fuzeng Ren. A high strength, wear and corrosion-resistant, antibacterial and biocompatible Nb-5 at.% Ag alloy for dental and orthopedic implants [J]. J. Mater. Sci. Technol., 2021, 80(0): 266-278. |
[14] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[15] | Dong Wang, Guo He, Ye Tian, Ning Ren, Jiahua Ni, Wei Liu, Xianlong Zhang. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration [J]. J. Mater. Sci. Technol., 2020, 44(0): 160-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||