J. Mater. Sci. Technol. ›› 2022, Vol. 130: 93-102.DOI: 10.1016/j.jmst.2022.05.011
• Research Article • Previous Articles Next Articles
Mingyu Gaoa, Shunchao Lia, Weimian Guana, Hongbin Xiea, Xiaoxiang Wanga, Jiabin Liua,b,*(
), Hongtao Wangb,*(
)
Received:2022-02-11
Revised:2022-04-24
Accepted:2022-05-05
Published:2022-12-10
Online:2022-12-07
Contact:
Jiabin Liu,Hongtao Wang
About author:E-mail addresses: htw@zju.edu.cn (H. Wang)Mingyu Gao, Shunchao Li, Weimian Guan, Hongbin Xie, Xiaoxiang Wang, Jiabin Liu, Hongtao Wang. Excellent thermal shock resistance of NiCrAlY coatings on copper substrate via laser cladding[J]. J. Mater. Sci. Technol., 2022, 130: 93-102.
| Ni | Cr | Al | Y |
|---|---|---|---|
| 70.3 | 19.5 | 9.7 | 0.5 |
Table 1. Chemical composition of the NiCrAlY powder (at.%).
| Ni | Cr | Al | Y |
|---|---|---|---|
| 70.3 | 19.5 | 9.7 | 0.5 |
| Type | Total laser power (W) | Beam diameter (mm) | Powder feed rate (g/min) | Scanning speed (mm/s) | Overlap ratio (%) |
|---|---|---|---|---|---|
| HSLC | 3925 | 1.5 | 4.8 | 90 | 75 |
| CLC | 2310 | 3.0 | 5.5 | 10 | 30 |
Table 2. Typical deposition parameters of the two cladding modes.
| Type | Total laser power (W) | Beam diameter (mm) | Powder feed rate (g/min) | Scanning speed (mm/s) | Overlap ratio (%) |
|---|---|---|---|---|---|
| HSLC | 3925 | 1.5 | 4.8 | 90 | 75 |
| CLC | 2310 | 3.0 | 5.5 | 10 | 30 |
Fig. 4. Cross-sectional optical micrographs of the (a) HSLC cladding layer and the (b) CLC cladding layer. (c) and (d) correspond to the magnified images of areas A and B in (a) and (b), respectively.
Fig. 5. SEM images of the cladding layers: Cross-sectional microstructure of (a) HSLC-layer and (d) CLC-layer; near-substrate horizontal microstructure of (b) HSLC-layer and (e) CLC-layer; near-surface horizontal microstructure of (c) HSLC-layer and (f) CLC-layer.
Fig. 10. Comparison of the thermal cycling lifetime of NiCrAlY coatings prepared on copper substrate by different methods: APS [31], HVOF [32], CLC, and HSLC. More than 20% of the spalled area and cracked was defined as the criterion for the coating failure [24].
Fig. 11. Cross-sectional microstructure after thermal shock failure: (a) CLC-layer and (b) HSLC-layer. The insets (a) and (b) display the original cross-sectional images of the claddings. The EDS mappings correspond to the area circled by the blue dashed rectangle (c).
Fig. 12. (a) Cross-sectional image of the CLC-layer after thermal shock failure. (b) Magnified image of area A in (a). (c) Microcracks extend along the dendrite interstices.
| [1] | D.Y. Liu, B.C. Ai, J.J. Yu, Acta Aerodyn. Sin. 26 (2007) 106-110. |
| [2] | Y.S. Long, J. Yuan, F. Yao, S.H. Zhao, B. Yang, J. Northwest. Polytech. Univ. 39 (2021) 776-785. |
| [3] |
P.L. Zhang, M.C. Li, Z.S. Yu, Materials (Basel) 11 (2018) 875.
DOI URL |
| [4] | M.Y. Gao, H.B. Xie, Y.T. Fang, H.T. Wang, J.B. Liu, Chin. J. Nonferrous Met. 31 (2021) 1121-1133. |
| [5] |
Y.X. Jia, S.L. Zhu, Z.L. Liu, L.L. Yang, M.L. Shen, F.H. Wang, Corros. Sci. 180 (2021) 109184.
DOI URL |
| [6] |
L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J. Schoenung, V. Provenzano, Mater. Sci. Eng. A 338 (2002) 33-43.
DOI URL |
| [7] |
P. Jain, S.V. Raj, K.J. Hemker, Acta Mater. 55 (2007) 5103-5113.
DOI URL |
| [8] |
H. Iwamoto, T. Sumikawa, K. Nishida, T. Asano, M. Nishida, T. Araki, Mater. Sci. Eng. A 241 (1998) 251-258.
DOI URL |
| [9] |
L.S. Cook, A. Wolfenden, W.J. Brindley, J. Mater. Sci. 29 (1994) 5104-5108.
DOI URL |
| [10] | Y.H. Zhang, D.Y. Liu, R.S. Yang, G.M. Yang, Y.S. Liu, Aerosp. Mater. Technol. 37 (2007) 70-72. |
| [11] |
W.Y. Yuan, R.F. Li, Z.H. Chen, J.Y. Gu, Y.T. Tian, Surf. Coat. Technol. 405 (2021) 126582.
DOI URL |
| [12] |
R.Y. Zhu, P.L. Zhang, Z.S. Yu, H. Yan, S.W. Li, D. Wu, H.C. Shi, Y.T. Tian, Surf. Coat. Technol. 383 (2020) 125248.
DOI URL |
| [13] |
G. Moskal, D. Niemiec, B. Chmiela, P. Kalamarz, T. Durejko, M. Zietala, T. Czujko, Surf. Coat. Technol. 387 (2020) 125317.
DOI URL |
| [14] |
G.Y. Jiang, M. Li, P. Xu, M. Pang, Laser Optoelectron. Prog. 56 (2019) 081401.
DOI URL |
| [15] |
T.H. Becker, P. Kumar, U. Ramamurty, Acta Mater. 219 (2021) 117240.
DOI URL |
| [16] |
A. Hirose, H. Kotani, K. Kobayashi, J. Iron Steel Inst. Jpn. 79 (1993) 105-112.
DOI URL |
| [17] |
J.H. Shieh, S.T. Wu, Appl. Phys. Lett. 59 (1991) 1512-1514.
DOI URL |
| [18] |
P.P. Zhang, L. Sun, X.F. Zhang, Y.L. Wang, Q.L. Zhang, J.H. Yao, F. Chang, J. Therm. Spray Technol. 30 (2021) 1038-1048.
DOI URL |
| [19] |
Z.Y. Yi, C.C. Song, G.H. Zhang, T.Q. Tong, G.Y. Ma, D.J. Wu, Materials (Basel) 14 (2021) 5785.
DOI URL |
| [20] |
H.R. Wang, Y.F. Sun, Y.Z. Qiao, X.S. Du, Opt. Laser Technol. 142 (2021) 107209.
DOI URL |
| [21] |
Z.Y. Li, H. Yan, P.L. Zhang, J.L. Guo, Z.S. Yu, J.W. Ringsberg, Surf. Coat. Technol. 405 (2021) 126592.
DOI URL |
| [22] | H.Y. Wang, D.W. Zuo, Y.Y. Lu, H.H. Xu, J. Aerosp. Mater. 28 (2008) 57-60. |
| [23] |
W.M. Guan, M.Y. Gao, H. Lv, J. Yuan, D.J. Chen, T. Zhu, Y.T. Fang, J.B. Liu, H.T. Wang, Z.G. Tang, W. Yang, Surf. Coat. Technol. 421 (2021) 127454.
DOI URL |
| [24] |
M. Pourbafrani, R.S. Razavi, S.R. Bakhshi, M.R. Loghman-Estarki, H. Jamali, Surf. Eng. 31 (2015) 64-73.
DOI URL |
| [25] |
L.Q. Li, F.M. Shen, Y.D. Zhou, W. Tao, J. Laser Appl. 31 (2019) 042009.
DOI URL |
| [26] |
J.J. Liang, H. Wei, Y.L. Zhu, X.F. Sun, Z.Q. Hu, M.S. Dargusch, X. Yao, J. Mater. Sci. 46 (2011) 500-508.
DOI URL |
| [27] |
S.F. Zhou, J.B. Lei, Z. Xiong, J.B. Guo, Z.J. Gu, X.Q. Dai, C. Yan, H.B. Pan, J. Mater. Res. 31 (2016) 1338-1347.
DOI URL |
| [28] | D. Zhao, Y.L. An, X.Q. Zhao, G. Liu, J. Chen, H.D. Zhou, Surf. Technol. 49 (2020) 276-284. |
| [29] | H. Zhang, L. Shi, China Surf. Eng. 26 (2013) 76-81. |
| [30] |
T. Schopphoven, A. Gasser, K. Wissenbach, R. Poprawe, J. Laser Appl. 28 (2016) 022501.
DOI URL |
| [31] |
M. Li, K. Xia, W. Wei, Q.B. Du, X.B. Zhao, J. Hu, Surf. Eng. 36 (2020) 1113-1120.
DOI URL |
| [32] | R. Zhang, D. Liu, L. Guo, Electroplat. Finish. 36 (2017) 548-551. |
| [33] |
J. Schloesser, M. Baker, J. Rosler, Surf. Coat. Technol. 206 (2011) 1605- 1608.
DOI URL |
| [34] | E. Hosseini, V.A. Popovich, Addit. Manuf. 30 (2019) 100877. |
| [35] |
X. Zhao, S. Sui, Z. Li, C. Sun, J. Chen, Chin. J. Lasers 47 (2020) 0802004.
DOI URL |
| [36] |
A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, P. Davami, Mater. Sci. Technol. 16 (2000) 579-586.
DOI URL |
| [37] |
H.M. Wang, J.H. Zhang, Y.J. Tang, Z.Q. Hu, N. Yukawa, M. Morinaga, Y. Murata, Mater. Sci. Eng. A 156 (1992) 109-116.
DOI URL |
| [38] |
T. Fiedler, J. Rosler, M. Baker, J. Therm. Spray Technol. 24 (2015) 1480-1486.
DOI URL |
| [1] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
| [2] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
| [3] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
| [4] | Guhui Gao, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 142-157. |
| [5] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
| [6] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
| [7] | Jinhu Zhang, Min Qi, Haisheng Xu, Hao Wang, Yingjie Ma, Dongsheng Xu, Rui Yang. A phase-field model for simulating the growth of α sideplates with branching in titanium alloys [J]. J. Mater. Sci. Technol., 2022, 123(0): 154-158. |
| [8] | Y. Tao, Z. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints [J]. J. Mater. Sci. Technol., 2022, 123(0): 92-112. |
| [9] | C.L. Jia, L.H. Wu, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of static annealing on superplastic behavior of a friction stir welded Ti-6Al-4V alloy joint and microstructural evolution during deformation [J]. J. Mater. Sci. Technol., 2022, 130(0): 112-123. |
| [10] | Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation [J]. J. Mater. Sci. Technol., 2022, 120(0): 139-149. |
| [11] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
| [12] | Shuai Zeng, Yongkang Zhou, Huan Li, Hongwei Zhang, Haifeng Zhang, Zhengwang Zhu. Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys [J]. J. Mater. Sci. Technol., 2022, 130(0): 64-74. |
| [13] | Mengyuan Hao, Pei Li, Xuexiong Li, Tianlong Zhang, Dong Wang, Qiaoyan Sun, Libin Liu, Jinshan Li, Yuyou Cui, Rui Yang, Dongsheng Xu. Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility [J]. J. Mater. Sci. Technol., 2022, 124(0): 150-163. |
| [14] | Zhongjie Li, Jiajun Qiu, Hao Xu, Anping Dong, Lin He, Guoliang Zhu, Dafan Du, Hui Xing, Xuanyong Liu, Baode Sun. Characteristics of β-type Ti-41Nb alloy produced by laser powder bed fusion: Microstructure, mechanical properties and in vitro biocompatibility [J]. J. Mater. Sci. Technol., 2022, 124(0): 260-272. |
| [15] | Tianxing Chang, Xuewei Fang, Gang Liu, Hongkai Zhang, Ke Huang. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 65-75. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
