J. Mater. Sci. Technol. ›› 2022, Vol. 128: 142-147.DOI: 10.1016/j.jmst.2022.04.029
• Research Article • Previous Articles Next Articles
Deng Yiboa, Xu Xiaoguanga,*(), Zhang Lub, Du Feib, Liu Qic, Chen Jikuna, Meng Kangkanga, Wu Yonga, Yang Mingd, Jiang Yonga,*(
)
Received:
2022-03-08
Revised:
2022-04-09
Accepted:
2022-04-28
Published:
2022-11-20
Online:
2022-11-22
Contact:
Xu Xiaoguang,Jiang Yong
About author:
yjiang@ustb.edu.cn (Y. Jiang).Deng Yibo, Xu Xiaoguang, Zhang Lu, Du Fei, Liu Qi, Chen Jikun, Meng Kangkang, Wu Yong, Yang Ming, Jiang Yong. Lithium incorporation enhanced resistive switching behaviors in lithium lanthanum titanium oxide-based heterostructure[J]. J. Mater. Sci. Technol., 2022, 128: 142-147.
Fig. 1. (a) XRD patterns of Li0.5La0.5TiO3 target and the as grown Si/SiO2/Ti/Pt/LLTO film. (b) Ti 2p XPS spectrum of the as grown Si/SiO2/Ti/Pt/LLTO film.
Fig. 2. (a) I-V curves of the Pt/LLTO/Pt device under repeated voltage sweeps of 0 V → +6 V → 0 V → ?6 V → 0 V. The first and 100th sweeps are highlighted by red and blue. The inset shows the Schematic diagram of the Pt/LLTO/Pt devices.
Fig. 6. Illustration of the lithium ions migration processes in bulk LLTO under voltage sweeps. The gradient colored background of LLTO represents the difference of resistivity, where the darkness is consistent with the resistivity.
Device structure | Number of oxide layers | Forming free | Rectification ratio | on/off ratio |
---|---|---|---|---|
Pt/LLTO/Pt (this work) | 1 | Yes | >104 | >102 |
n++Si/SiO2/HfOx/Ni [2] | 2 | No | >103 | >103 |
Pt/Al2O3/NiOx/Ti [30] | 2 | Yes | ∼5 × 102 | ∼6 × 103 |
Ta/TaOx/HfO2/Pd [31] | 2 | Yes | ∼2 × 103 | >103 |
TiN/NbOx/TiOy/NbOx/Pt [32] | 3 | Yes | ∼105 | >102 |
Table 1. Comparison of different self-rectifying resistive switching devices.
Device structure | Number of oxide layers | Forming free | Rectification ratio | on/off ratio |
---|---|---|---|---|
Pt/LLTO/Pt (this work) | 1 | Yes | >104 | >102 |
n++Si/SiO2/HfOx/Ni [2] | 2 | No | >103 | >103 |
Pt/Al2O3/NiOx/Ti [30] | 2 | Yes | ∼5 × 102 | ∼6 × 103 |
Ta/TaOx/HfO2/Pd [31] | 2 | Yes | ∼2 × 103 | >103 |
TiN/NbOx/TiOy/NbOx/Pt [32] | 3 | Yes | ∼105 | >102 |
[1] | H. Li, S. Wang, X. Zhang, W. Wang, R. Yang, Z. Sun, W. Feng, P. Lin, Z. Wang, L. Sun, Y. Yao, Adv. Intell. Syst. 3 (2021) 210 0 017. |
[2] | X. Wu, K. Yu, D. Cha, M. Bosman, N. Raghavan, X. Zhang, K. Li, Q. Liu, L. Sun, K. Pey, Adv. Sci. 5 (2018) 180 0 096. |
[3] |
C. Li, L. Han, H. Jiang, M.-. H. Jang, P. Lin, Q. Wu, M. Barnell, J.J. Yang, H.L. Xin, Q. Xia, Nat. Commun. 8 (2017) 15666.
DOI URL |
[4] | L. Zhang, Z. Xu, J. Han, L. Liu, C. Ye, Y. Zhou, W. Xiong, Y. Liu, G. He, J. Mater. Sci. Technol. 49 (2020) 3490. |
[5] | S. Gao, F. Zeng, F. Li, M. Wang, H. Mao, G. Wang, C. Song, F. Pan, Nanoscale 7 (2015) 6031. |
[6] |
E. Abbaspour, S. Menzel, C. Jungemann, J. Comput. Electron. 19 (2020) 1426.
DOI URL |
[7] | K.M. Kim, B.J. Choi, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok, J.H. Yoon, S. Han, C. S. Hwang, Nanotechnology 22 (2011) 254010. |
[8] | S. Wan, Y. Yan, C. Wang, Z. Yang, J. Zhao, Vacuum 156 (2018) 91. |
[9] |
Y. Shuai, X. Ou, W. Luo, A. Mücklich, D. Bürger, S. Zhou, C. Wu, Y. Chen, W. Zhang, M. Helm, T. Mikolajick, O.G. Schmidt, H. Schmidt, Sci. Rep. 3 (2013) 2208.
DOI PMID |
[10] | Q. Luo, X. Zhang, Y. Hu, T. Gong, X. Xu, P. Yuan, H. Ma, D. Dong, H. Lv, S. Long, Q. Liu, M. Liu, IEEE Electron. Device Lett. 39 (2018) 5. |
[11] | H.-. J. Kim, H. Zheng, J.-. S. Park, D. Hun Kim, C. Jung Kang, J. Tae Jang, D. Hwan Kim, T.-. S. Yoon, Nanotechnology 28 (2017) 285203. |
[12] |
Y. Deng, X. Xu, Z. Xu, M. Wang, Q. Liu, Y. Ma, J. Chen, K. Meng, Y. Wu, J. Miao, Y. Jiang, Ceram. Int. 48 (2021) 4693.
DOI URL |
[13] |
S.-. P. Song, C. Yang, C.-. Z. Jiang, Y.-. M. Wu, R. Guo, H. Sun, J.-. L. Yang, Y. Xiang, X.-. K. Zhang, Rare Met. 41 (2021) 179.
DOI URL |
[14] |
T.-. Q. Yang, C. Wang, W.-. K. Zhang, Y. Xia, Y.-. P. Gan, H. Huang, X.-. P. He, J. Zhang, Rare Met. 41 (2022) 1870-1879.
DOI URL |
[15] |
J.Z. Lee, Z. Wang, H.L. Xin, T.A. Wynn, Y.S. Meng, J. Electrochem. Soc. 164 (2017) A6268.
DOI URL |
[16] |
L. Zhang, X. Zhang, G. Tian, Q. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z. Shen, G. Yang, L. Gu, F. Du, Nat. Commun. 11 (2020) 3490.
DOI PMID |
[17] | T. Shi, J.-. F. Wu, Y. Liu, R. Yang, X. Guo, Adv. Electron. Mater. 3 (2017) 170 0 046. |
[18] |
G.R. Fox, S. Trolier-McKinstry, S.B. Krupanidhi, L.M. Casas, J. Mater. Res. 10 (1995) 1508.
DOI URL |
[19] | D.H. Kim, S. Imashuku, L. Wang, Y. Shao-Horn, C.A. Ross, J. Cryst. Growth 372 (2013) 9. |
[20] |
L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.-. K. Xue, X. Du, Phys. Rev. B 93 (2016) 235305.
DOI URL |
[21] |
J.-. K. Ahn, S.-. G. Yoon, Electrochem. Solid-State Lett. 8 (2005) A75.
DOI URL |
[22] | J.H. Yoon, D.E. Kwon, Y. Kim, Y.J. Kwon, K.J. Yoon, T.H. Park, X.L. Shao, C. S. Hwang, Nanoscale 9 (2017) 11920. |
[23] |
I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nat. Commun. 4 (2013) 1771.
DOI PMID |
[24] |
J.J. Yang, J.P. Strachan, Q. Xia, D.A. A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22 (2010) 4034.
DOI URL |
[25] |
D. Joung, A. Chunder, L. Zhai, S.I. Khondaker, Appl. Phys. Lett. 97 (2010) 093105.
DOI URL |
[26] |
T. Aziz, Y. Sun, Z.-. H. Wu, M. Haider, T.-. Y. Qu, A. Khan, C. Zhen, Q. Liu, H.-. M. Cheng, D.-. M. Sun, J. Mater. Sci. Technol. 86 (2021) 151.
DOI URL |
[27] | D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, W.Q. Zhang, Phys. Rev. B 73 (2006) 2479. |
[28] |
Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li, D. Chu, Crit. Rev. Solid State Mater. Sci. 44 (2019) 265-282.
DOI URL |
[29] |
M. Zhao, Y. Zhu, Q. Wang, M. Wei, X. Liu, F. Zhang, C. Hu, T. Zhang, D. Qiu, M. Li, R. Xiong, Appl. Phys. Lett. 109 (2016) 013504.
DOI URL |
[30] |
J.H. Lee, J.H. Park, T.D. Dongale, T.G. Kim, J. Alloy. Compd. 821 (2020) 153247.
DOI URL |
[31] | H. Ma, X. Zhang, F. Wu, Q. Luo, T. Gong, P. Yuan, X. Xu, Y. Liu, S. Zhao, K. Zhang, C. Lu, P. Zhang, J. Feng, H. Lv, M. Liu, IEEE Trans. Electron. Devices 66 (2019) 2. |
[32] |
K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li, R.S. Williams, Nano Lett. 16 (2016) 6724.
DOI URL |
[1] | Nasir Ilyas, Jingyong Wang, Chunmei Li, Hao Fu, Dongyang Li, Xiangdong Jiang, Deen Gu, Yadong Jiang, Wei Li. Controllable resistive switching of STO:Ag/SiO2-based memristor synapse for neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 97(0): 254-263. |
[2] | In-Su Kim, Jong-Un Woo, Hyun-Gyu Hwang, Bumjoo Kim, Sahn Nahm. Artificial synaptic and self-rectifying properties of crystalline (Na1-xKx)NbO3 thin films grown on Sr2Nb3O10 nanosheet seed layers [J]. J. Mater. Sci. Technol., 2022, 123(0): 136-143. |
[3] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[4] | Muhammad Ismail, Haider Abbas, Chandreswar Mahata, Changhwan Choi, Sungjun Kim. Optimizing the thickness of Ta2O5 interfacial barrier layer to limit the oxidization of Ta ohmic interface and ZrO2 switching layer for multilevel data storage [J]. J. Mater. Sci. Technol., 2022, 106(0): 98-107. |
[5] | Tukaram D. Dongale, Atul C. Khot, Ashkan V. Takaloo, Kyung Rock Son, Tae Geun Kim. Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device [J]. J. Mater. Sci. Technol., 2021, 78(0): 81-91. |
[6] | Li Zhang, Zhong Xu, Jia Han, Lei Liu, Cong Ye, Yi Zhou, Wen Xiong, Yanxin Liu, Gang He. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment [J]. J. Mater. Sci. Technol., 2020, 49(0): 1-6. |
[7] | Cong Ye, Jiaji Wu, Gang He, Jieqiong Zhang, Tengfei Deng, Pin He, Hao Wang. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review [J]. J. Mater. Sci. Technol., 2016, 32(1): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||