J. Mater. Sci. Technol. ›› 2022, Vol. 127: 115-123.DOI: 10.1016/j.jmst.2022.02.045
• Research Article • Previous Articles Next Articles
Xuesong Xu, Hongsheng Ding(), Haitao Huang, He Liang, Hao Guo, Ruirun Chen, Jingjie Guo, Hengzhi Fu
Received:
2021-07-06
Revised:
2022-02-20
Accepted:
2022-02-26
Published:
2022-11-10
Online:
2022-11-10
Contact:
Hongsheng Ding
About author:
* E-mail address: dhs801@163.com (H. Ding)Xuesong Xu, Hongsheng Ding, Haitao Huang, He Liang, Hao Guo, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Twin and twin intersection phenomena in a creep deformed microalloyed directionally solidified high Nb containing TiAl alloy[J]. J. Mater. Sci. Technol., 2022, 127: 115-123.
Fig. 1. Macro/microstructure of the DS high Nb containing TiAl alloys: (a) macrostructure image of the longitudinal section of Ti46Al7Nb alloy; (b) macrostructure image of the longitudinal section of Ti46Al7Nb0.4W0.6Cr0.1B alloy; (c) metallographic microstructure image of the DS stable growth zone of the microalloyed high Nb containing TiAl alloy; (d) SEM image of the cross-section of the DS columnar crystal region in (b).
Fig. 2. Creep curves (a) and creep rate and strain curves (b) of the DS Ti46Al7Nb and Ti46Al7Nb0.4W0.6Cr0.1B alloys at the condition of 760 °C and 275 MPa.
Fig. 3. TEM images of microalloyed DS high Nb containing TiAl alloy after creep tests: (a) dislocation entanglement and γ recrystallization, (b) dislocation entanglement induces subgrain boundary formation, (c) intersection between high-density dislocations and twins, (d) twin intersections.
Fig. 4. Typical mechanical twin structure of DS TiAl alloy lamellar structure after creep deformation: (a) bright field image of deformation microstructure, (b) selected area electron diffraction (SAED) pattern of the white cycle in (a), (c) high resolution TEM (HRTEM) of twin, (d-g) fast fourier transform (FFT) diagrams of the white boxes in (c), respectively.
Fig. 5. Schematic diagram of superlattice intrinsic stacking fault (SISF) and twin formation in γ phase: (a) ABCABC stacking sequence; (b) ABCAC'ABC stacking sequence; (c) twin formation on (-110) plane.
Fig. 6. Twin intersections in lamellar structure of DS TiAl alloy after creep deformation: (a) twin intersection in the γ lamellae, (b) the magnified figure of the yellow box in (a), (c) twin intersection across γ lamellae, (d) the magnified figure of the red box in (c), (e) SAED pattern of twin intersection in (d), (f) calibration of SAED in (e).
Fig. 7. HRTEM images of twin intersection in DS TiAl alloy after creep deformation: (a) twin intersection and stacking faults, (b-e) FFT images of area b, c and d in (a), respectively, (e) center position of the intersection of (a).
[1] |
T.M. Pollock, Nat. Mater. 15 (2016) 809-815.
DOI PMID |
[2] |
X. Wu, Intermetallics 14 (2006) 1114-1122.
DOI URL |
[3] |
M. Yamaguchi, H. Inui, K. Ito, Acta Mater. 48 (2000) 307-322.
DOI URL |
[4] |
R. Braun, N. Laska, S. Knittel, U. Schulz, Mater. Sci. Eng. A 699 (2017) 118-127.
DOI URL |
[5] |
H. Clemens, S. Mayer, Adv. Eng. Mater. 15 (2013) 191-215.
DOI URL |
[6] |
W.E. Voice, M. Henderson, E.F.J. Shelton, X. Wu, Intermetallics 13 (2005) 959-964.
DOI URL |
[7] |
G.L. Chen, X.J. Xu, Z.K. Teng, Y.L. Wang, J.P. Lin, Intermetallics 15 (2007) 625-631.
DOI URL |
[8] |
B. Zhu, X. Xue, H. Kou, X. Li, J. Li, Mater. Sci. Eng. A 729 (2018) 86-93.
DOI URL |
[9] |
G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, C.T. Liu, Nat. Mater. 15 (2016) 876-881.
DOI URL |
[10] |
G. Nie, H. Ding, R. Chen, J. Guo, H. Fu, Mater. Des. 39 (2012) 350-357.
DOI URL |
[11] |
Q. Wang, R. Chen, Y. Yang, S. Wu, J. Guo, H. Ding, Y. Su, H. Fu, Mater. Sci. Eng. A 711 (2018) 508-514.
DOI URL |
[12] |
E. Cerreta, S. Mahajan, Acta Mater. 49 (2001) 3803-3809.
DOI URL |
[13] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57 (2012) 1-62.
DOI URL |
[14] |
Q. Wang, H. Ding, H. Zhang, R. Chen, J. Guo, H. Fu, Mater. Charact. 137 (2018) 133-141.
DOI URL |
[15] |
D. Wen, D. Shan, S. Wang, Y. Zong, Mater. Sci. Eng. A 710 (2018) 374-384.
DOI URL |
[16] |
J. Ding, M. Zhang, Y. Liang, Y. Ren, C. Dong, J. Lin, Acta Mater. 161 (2018) 1-11.
DOI URL |
[17] |
A. Vinogradov, M. Heczko, V. Mazánová, M. Linderov, T. Kruml, Acta Mater. 212 (2021) 116921.
DOI URL |
[18] |
H.Y. Kim, K. Maruyama, Acta Mater. 49 (2001) 2635-2643.
DOI URL |
[19] |
B. Skrotzki, M. Ünal, G. Eggeler, Scr. Mater. 39 (1998) 1023-1029.
DOI URL |
[20] |
T.E.J. Edwards, F.D. Gioacchino, R. Muñoz-Moreno, W.J. Clegg, Acta Mater. 140 (2017) 305-316.
DOI URL |
[21] |
F. Appel, F.D. Fischer, H. Clemens, Acta Mater. 55 (2007) 4915-4923.
DOI URL |
[22] |
M.H. Yoo, A. Hishinuma, Met. Mater. 3 (1997) 65-74.
DOI URL |
[23] | A.H. Cottrell, B.A. Bilby, Lond. Edinb. Dublin Philos. Mag. J. Sci. 42 (1951) 573-581. |
[24] |
K.P.D. Lagerlöf, J. Castaing, P. Pirouz, A.H. Heuer, Philos. Mag. A 82 (2002) 2841-2854.
DOI URL |
[25] |
J.A. Venables, Philos. Mag. 6 (1961) 379-396.
DOI URL |
[26] |
X. Xu, H. Ding, H. Huang, H. Liang, R. Chen, J. Guo, H. Fu, Mater. Sci. Eng. A 807 (2021) 140902.
DOI URL |
[27] |
R. Xu, M. Li, J. Mater. Sci. Technol. 88 (2021) 90-98.
DOI URL |
[28] |
Y.Q. Sun, P.M. Hazzledine, J.W. Christian, Philos. Mag. A 68 (1993) 471-494.
DOI URL |
[29] |
H. Ding, R. Chen, J. Guo, W. Bi, D. Xu, H. Fu, Mater. Lett. 59 (2005) 741-745.
DOI URL |
[30] |
X. Xu, H. Ding, H. Huang, H. Liang, R. Chen, J. Guo, H. Fu, J. Mater. Res. Technol. 11 (2021) 2221-2234.
DOI URL |
[31] |
S. Dong, R. Chen, J. Guo, H. Ding, Y. Su, H. Fu, Mater. Sci. Eng. A 614 (2014) 67-74.
DOI URL |
[32] |
H. Ding, Y. Wang, R. Chen, J. Guo, H. Fu, Mater. Des. 86 (2015) 670-678.
DOI URL |
[33] | M.C. Kim, M.H. Oh, J.H. Lee, H. Inui, M. Yamaguchi, D.M. Wee, Mater. Sci. Eng. A 239 (1997) 570-576. |
[34] |
Q. Wang, H. Ding, H. Zhang, R. Chen, J. Guo, H. Fu, Mater. Sci. Eng. A 692 (2017) 102-112.
DOI URL |
[35] |
H. Zhu, D.Y. Seo, K. Maruyama, P. Au, Scr. Mater. 52 (2005) 45-50.
DOI URL |
[36] |
A. Chakraborty, J.C. Earthman, Acta Mater. 45 (1997) 4615-4626.
DOI URL |
[37] |
F. Herrouin, D. Hu, P. Bowen, I.P. Jones, Acta Mater. 46 (1998) 4963-4972.
DOI URL |
[38] |
A. Couret, J. Monchoux, D. Caillard, Acta Mater. 181 (2019) 331-341.
DOI |
[39] |
L. Zhang, R. Song, C. Zhao, F. Yang, Mater. Sci. Eng. A 640 (2015) 225-234.
DOI URL |
[40] |
Q. Wang, L. Zeng, T. Gao, H. Du, X. Liu, J. Mater. Sci. Technol. 87 (2021) 29-38.
DOI URL |
[41] |
M.H. Yoo, J. Mater. Res. 4 (1989) 50-54.
DOI URL |
[42] |
Z. Jin, T.R. Bieler, Philos. Mag. A 71 (1995) 925-947.
DOI URL |
[43] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[44] |
C.L. Chen, W. Lu, Y.Y. Cui, L.L. He, H.Q. Ye, J. Alloy Compd. 454 (2008) 201-205.
DOI URL |
[45] |
Y.Q. Sun, P.M. Hazzledine, J.W. Christian, Philos. Mag. A 68 (1993) 495-516.
DOI URL |
[46] | F. Appel, J.D.H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH, Weinheim, 2011. |
[47] |
M.A. Morris, M. Leboeuf, Intermetallics 5 (1997) 339-354.
DOI URL |
[48] |
X. Xu, H. Ding, W. Li, H. Huang, H. Liang, R. Chen, J. Guo, H. Fu, Mater. Sci. Eng. A 822 (2021) 141633.
DOI URL |
[49] | F. Appel, R. Wagner, Mater. Sci. Eng. R (1998) 187-268. |
[50] |
W.J. Zhang, S.C. Deevi, G.L. Chen, Intermetallics 10 (2002) 403-406.
DOI URL |
[51] |
J.D.H. Paul, F. Appel, R. Wagner, Acta Mater. 46 (1998) 1075-1085.
DOI URL |
[52] |
G. Yang, S. Ma, K. Du, D. Xu, S. Chen, Y. Qi, H. Ye, J. Mater. Sci. Technol. 35 (2019) 402-408.
DOI URL |
[53] |
Y. Yuan, H.W. Liu, X.N. Zhao, Phys. Lett. A 358 (2006) 231-235.
DOI URL |
[54] | G.L. Chen, J.G. Wang, L.C. Zhang, H.Q. Ye, Acta Metall. Sin. 8 (1995) 273. |
[55] |
Y.L. Hao, D.S. Xu, Y.Y. Cui, R. Yang, D. Li, Acta Mater. 47 (1999) 1129-1139.
DOI URL |
[56] |
Y. Song, Z.X. Guo, R. Yang, J. Light Met. 2 (2002) 115-123.
DOI URL |
[57] |
W.J. Zhang, F. Appel, Mater. Sci. Eng. A 334 (2002) 59-64.
DOI URL |
[58] |
M. Shih, J. Miao, M. Mills, M. Ghazisaeidi, Nat. Commun. 12 (2021) 3590.
DOI URL |
[59] |
D.Y. Seo, L. Zhao, J. Beddoes, Metall. Mater. Trans. A 34 (2003) 2177-2190.
DOI URL |
[60] |
Q. Wang, R. Chen, X. Gong, J. Guo, Y. Su, H. Ding, H. Fu, Intermetallics 94 (2018) 152-159.
DOI URL |
[61] |
A.M. Hodge, L.M. Hsiung, T.G. Nieh, Scr. Mater. 51 (2004) 411-415.
DOI URL |
[62] |
S. Liu, H. Ding, H. Zhang, R. Chen, J. Guo, H. Fu, Nanoscale 10 (2018) 11365-11374.
DOI URL |
[63] |
V. Singh, C. Mondal, R. Sarkar, P.P. Bhattacharjee, P. Ghosal, Mater. Sci. Eng. A 774 (2020) 138891.
DOI URL |
[64] |
S. Wardle, I. Phan, Philos. Mag. A 67 (1993) 497-514.
DOI URL |
[65] |
G.L. Chen, L.C. Zhang, Intermetallics 8 (2000) 539-5414.
DOI URL |
[1] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[2] | Dongxu Li, Guoying Zhang, Gang Lu, Yujie Liu, Jianjun Wang, Chunming Liu. Precipitation of Ti2Al phases at lamellar interfaces in a high-Nb-containing TiAl alloy during thermal exposure [J]. J. Mater. Sci. Technol., 2022, 126(0): 132-140. |
[3] | Jia Chen, Min Guo, Min Yang, Lin Liu, Jun Zhang. Double minimum creep processing and mechanism for γʹ strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 123-129. |
[4] | Hyun Chung, Dae Woong Kim, Woo Jin Cho, Heung Nam Han, Yuji Ikeda, Shoji Ishibashi, Fritz Körmann, Seok Su Sohn. Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 270-280. |
[5] | Sithiprumnea Dul, Brenda J. Alonso Gutierrez, Alessandro Pegoretti, Jaime Alvarez-Quintana, Luca Fambri. 3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2022, 121(0): 52-66. |
[6] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[7] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[8] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[9] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[10] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
[11] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
[12] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[13] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[14] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[15] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||