J. Mater. Sci. Technol. ›› 2022, Vol. 125: 128-144.DOI: 10.1016/j.jmst.2022.02.035
• Research Article • Previous Articles Next Articles
Yunfeng Lia,*(), Zhiling Xiaa, Qing Yanga, Linxi Wangb,*(
), Yan Xingc
Received:
2021-10-30
Revised:
2022-01-25
Accepted:
2022-02-01
Published:
2022-04-18
Online:
2022-04-18
Contact:
Yunfeng Li,Linxi Wang
About author:
linxiwang91@126.com (L. Wang).Yunfeng Li, Zhiling Xia, Qing Yang, Linxi Wang, Yan Xing. Review on g-C3N4-based S-scheme heterojunction photocatalysts[J]. J. Mater. Sci. Technol., 2022, 125: 128-144.
Fig. 3. Two possible charges transfer paths for (A,C) traditional Z-scheme heterojunction and (B,D) all-solid-state Z-scheme heterojunction. The labels D and A stand for electron donor and acceptor, respectively.
Fig. 6. Schematic diagram for the fabrication of all organic PDI-Ala/S-C3N4 S-scheme heterojunction photocatalysts. Reproduced with permission from Ref. [86]. Copyright 2021, Acta Physico-Chimica Sinica.
Fig. 7. (A) Transient photocurrent response, (B) electrochemical impedance spectroscopy and (C) photocatalytic reaction mechanism of defect-functionalized WO3/g-C3N4 S-scheme heterojunction. Reproduced with permission from Ref. [98]. Copyright 2021, Royal Society of Chemistry.
Fig. 8. (A) Transient photocurrent response, (B) linear sweep voltammetry, (C) electrochemical impedance spectroscopy and (D) photoluminescence spectrum of the samples. Reproduced with permission from Ref. [99]. Copyright 2021, American Chemical Society.
Fig. 9. (A) Calculated charges density difference within the composite system. Photocatalytic mechanism of S-scheme (B) g-C3N4/SnS2 and (C) O-C3N4/SnS2 heterojunctions. Reproduced with permission from Ref. [100]. Copyright 2021, Elsevier.
S-scheme heterojunction | Mass of sample | Light source (wavelength/nm) | Hydrogen (μmol/h) | Enhancement factor versus g-C3N4 | AQY (%) | Refs. |
---|---|---|---|---|---|---|
WO3/g-C3N4 | 50 | 350 W Xe lamp (λ>420 nm) | 982 | 1.7 | — | [ |
BiVO3/g-C3N4 | 50 | 350 W Xe lamp | 6800 | 10 | — | [ |
N-MoS2/S-g-C3N4 | 50 | 300 W Xe lamp | 658.5 | 23 | — | [ |
Bi2S3/g-C3N4 | 30 | 300 W Xe lamp | 3394.1 | 2.6 | — | [ |
WO3/g-C3N4 | 30 | 300 W Xe lamp | 1034 | 4.5 | 7.4 | [ |
g-C3N4/α-Fe2O3/Co3S4 | 10 | 5 W LED white light | 191.41 | 1007.4 | — | [ |
O-g-C3N4/SnS2 | 20 | 350 W Xe lamp | 154 | — | — | [ |
(TiO2NT)/TiO2/g-C3N4 | 30 | 300 W mercury lamp | 7.97 | — | — | [ |
W18O49/g-C3N4 | 25 | 300 W Xe lamp (λ>420 nm) | 892 | 3.4 | 6.21 | [ |
CdS/g-C3N4 | 5 | 300 W Xe lamp (λ>420 nm) | 15300 | 3060 | 6.86 | [ |
g-C3N4/g-C3N4 | 50 | 300 W Xe lamp (λ>420 nm) | 29.9 | 1.8 | — | 104 |
BiOBr/g-C3N4 | 30 | 300 W Xe lamp (λ>420 nm) | 106.63 | — | — | [ |
g-C3N4/Bi2MoO6 | 50 | 300 W Xe lamp (λ>420 nm) | 5.63 | 2.5 | — | [ |
Ni2P/g-C3N4/CdZnSe | 20 | 300 W Xe lamp (λ>420 nm) | 12627 | 105.23 | — | [ |
pg-C3N4/CdS-DETA | 50 | 300 W Xe lamp (λ>420 nm) | 9738 | 12.2 | — | [ |
S/Cl-g-C3N4/CdSe-D | 20 | 300 W Xe lamp (λ>420 nm) | 18800 | 391.67 | — | [ |
MoO3/g-C3N4 | 50 | 300 W Xe lamp (λ>420 nm) | 512500 | 13.9 | — | [ |
g-C3N4/Zn0.2Cd0.8S-DETA | 50 | 300 W Xe lamp (λ>420 nm) | 6690 | 16.7 | — | [ |
CuInS2/g-C3N4 | 50 | 350 W Xe lamp (λ>420 nm) | 375 | 1.57 | — | [ |
CuI-GD/g-C3N4 | 10 | 5 W LED white light | 49.8 | 9.8 | — | [ |
CdS/g-C3N4 | 50 | 300 W Xe lamp (λ>400 nm) | 262.6 | 26.8 | — | [ |
Ag/g-C3N4-g-C3N4 | 10 | 400 W metal halide lamp | 10100 | 8 | — | [ |
Table 1. Various g-C3N4-based S-scheme heterojunctions for photocatalytic hydrogen production reported in recent years.
S-scheme heterojunction | Mass of sample | Light source (wavelength/nm) | Hydrogen (μmol/h) | Enhancement factor versus g-C3N4 | AQY (%) | Refs. |
---|---|---|---|---|---|---|
WO3/g-C3N4 | 50 | 350 W Xe lamp (λ>420 nm) | 982 | 1.7 | — | [ |
BiVO3/g-C3N4 | 50 | 350 W Xe lamp | 6800 | 10 | — | [ |
N-MoS2/S-g-C3N4 | 50 | 300 W Xe lamp | 658.5 | 23 | — | [ |
Bi2S3/g-C3N4 | 30 | 300 W Xe lamp | 3394.1 | 2.6 | — | [ |
WO3/g-C3N4 | 30 | 300 W Xe lamp | 1034 | 4.5 | 7.4 | [ |
g-C3N4/α-Fe2O3/Co3S4 | 10 | 5 W LED white light | 191.41 | 1007.4 | — | [ |
O-g-C3N4/SnS2 | 20 | 350 W Xe lamp | 154 | — | — | [ |
(TiO2NT)/TiO2/g-C3N4 | 30 | 300 W mercury lamp | 7.97 | — | — | [ |
W18O49/g-C3N4 | 25 | 300 W Xe lamp (λ>420 nm) | 892 | 3.4 | 6.21 | [ |
CdS/g-C3N4 | 5 | 300 W Xe lamp (λ>420 nm) | 15300 | 3060 | 6.86 | [ |
g-C3N4/g-C3N4 | 50 | 300 W Xe lamp (λ>420 nm) | 29.9 | 1.8 | — | 104 |
BiOBr/g-C3N4 | 30 | 300 W Xe lamp (λ>420 nm) | 106.63 | — | — | [ |
g-C3N4/Bi2MoO6 | 50 | 300 W Xe lamp (λ>420 nm) | 5.63 | 2.5 | — | [ |
Ni2P/g-C3N4/CdZnSe | 20 | 300 W Xe lamp (λ>420 nm) | 12627 | 105.23 | — | [ |
pg-C3N4/CdS-DETA | 50 | 300 W Xe lamp (λ>420 nm) | 9738 | 12.2 | — | [ |
S/Cl-g-C3N4/CdSe-D | 20 | 300 W Xe lamp (λ>420 nm) | 18800 | 391.67 | — | [ |
MoO3/g-C3N4 | 50 | 300 W Xe lamp (λ>420 nm) | 512500 | 13.9 | — | [ |
g-C3N4/Zn0.2Cd0.8S-DETA | 50 | 300 W Xe lamp (λ>420 nm) | 6690 | 16.7 | — | [ |
CuInS2/g-C3N4 | 50 | 350 W Xe lamp (λ>420 nm) | 375 | 1.57 | — | [ |
CuI-GD/g-C3N4 | 10 | 5 W LED white light | 49.8 | 9.8 | — | [ |
CdS/g-C3N4 | 50 | 300 W Xe lamp (λ>400 nm) | 262.6 | 26.8 | — | [ |
Ag/g-C3N4-g-C3N4 | 10 | 400 W metal halide lamp | 10100 | 8 | — | [ |
Fig. 10. Preparation process of ultrathin Ti3C2 quantum dots coupling TiO2/g-C3N4 core-shell S-scheme heterojunction. Reproduced with permission from Ref. [128]. Copyright 2020, Elsevier.
Fig. 11. Photocatalytic CO production rates over prepared samples in (A) acetonitrile/H2O and (B) ethyl acetate/H2O solvent systems. (C) Stability test and (D) CO production rates under various conditions. Reproduced with permission form Ref. [129]. Copyright 2021, American Chemical Society.
Fig. 12. (A) CO and CH4 yields and (B) H2, CO, CH4 yields with CO2 selectivity of the samples. (C) N2 adsorption-desorption isotherms and (D) CO2 adsorption capacity on the TiO2/MoS2/g-C3N4 S-scheme heterojunctions. Reproduced with permission form Ref. [130]. Copyright 2021, Elsevier.
S-scheme heterojunction | Mass of sample | Light source (wavelength/nm) | Reduction products | Yield (μmol g-1) | Enhancement factor versus g-C3N4 | Refs. |
---|---|---|---|---|---|---|
BiOBr/g-C3N4 | 20 | 100 W Xe lamp | CH3OH | 1068.07 | — | [42] |
g-C3N4/CdSe-DETA | 50 | 300 W Xe lamp (λ>420 nm) | CO | 25.87 | — | [61] |
g-C3N4/Bi/BiVO4 | 100 | 300 W Xe lamp (λ>420 nm) | CO | 0.63 | — | [65] |
g-C3N4/TiO2/C | 30 | Xe lamp (PLS-SXE300) | CO+CH4 | 9030 | 2.88 | [84] |
TiO2/C3N4/Ti3C2MXene | 30 | 350 W Xe lamp | CO+CH4 | 5.59 | 3 | [128] |
us-Cu3P|S/g-C3N4 | 5 | 300 W Xe lamp | CO | 137 | 8 | [129] |
TiO2/MoS2/g-C3N4 | 20 | 300 W Xe lamp (λ>420 nm) | CO+CH4 | 67.41 | 3.1 | [130] |
Table 2. g-C3N4-based S-scheme heterojunctions for photocatalytic CO2 reduction reported in recent years.
S-scheme heterojunction | Mass of sample | Light source (wavelength/nm) | Reduction products | Yield (μmol g-1) | Enhancement factor versus g-C3N4 | Refs. |
---|---|---|---|---|---|---|
BiOBr/g-C3N4 | 20 | 100 W Xe lamp | CH3OH | 1068.07 | — | [42] |
g-C3N4/CdSe-DETA | 50 | 300 W Xe lamp (λ>420 nm) | CO | 25.87 | — | [61] |
g-C3N4/Bi/BiVO4 | 100 | 300 W Xe lamp (λ>420 nm) | CO | 0.63 | — | [65] |
g-C3N4/TiO2/C | 30 | Xe lamp (PLS-SXE300) | CO+CH4 | 9030 | 2.88 | [84] |
TiO2/C3N4/Ti3C2MXene | 30 | 350 W Xe lamp | CO+CH4 | 5.59 | 3 | [128] |
us-Cu3P|S/g-C3N4 | 5 | 300 W Xe lamp | CO | 137 | 8 | [129] |
TiO2/MoS2/g-C3N4 | 20 | 300 W Xe lamp (λ>420 nm) | CO+CH4 | 67.41 | 3.1 | [130] |
Fig. 13. (A) Photocatalytic degradation of RhB over CdS-g-C3N4-GA with and without addition of scavengers. (B, C) EPR spectra of the prepared samples. (D-F) Calculated work functions of GA, g-C3N4 and CdS. (D) The charges transfer mechanism of CdS-g-C3N4-GA S-scheme heterojunctions. Reproduced with permission from Ref. [134]. Copyright 2021, Elsevier.
Fig. 14. Mott-Schottky plots of (A) MoS2/g-C3N4 sample prepared by calcination at 600 °C, (B) g-C3N4 sample prepared by calcination at 500 °C and (C) MoS2/g-C3N4 sample prepared by calcination at 500 °C. (D) The schematic diagram of band alignment of heterojunction and S-scheme charge transfer mechanism at interface of MoS2 and g-C3N4. Reproduced with permission from Ref. [135].
Fig. 15. (A,B) Photocatalytic degradation of tetracycline on prepared samples and fitted kinetic data assuming 1st-order reactions. (C) The k value of the fitted kinetic data. (D) Stability test of S-doped g-C3N4/WO2.72 S-scheme heterojunction. Reproduced with permission from Ref. [136]. Copyright 2021, Elsevier.
S-scheme heterojunction | Light source (wavelength/nm) | Application | Removal rate | Enhancement factor versus g-C3N4 | Refs. |
---|---|---|---|---|---|
ZnFe2O4/g-C3N4 | 8 W LED light | Uranium (VI) | 94.62% | — | [ |
Bi2WO6/g-C3N4 | 300 W Xe lamp (λ>400 nm) | Ammonium dinitramide | 98.93% | 7.17 | [ |
WO3/g-C3N4 | 300 W Xe lamp | Tetracycline | 90.54% | 2.25 | [ |
ZnO/g-C3N4 | 350 W Xe lamp (λ>420 nm) | MB | 92.5% | 8.5 | [ |
g-C3N4/ZrO2 | 300 W Xe lamp | Acid orange II | 98% | — | [ |
Bi2O3/P-C3N4 | 500 W Xe lamp | Levofloxacin | 89.2% | 1.33 | [ |
Bi2MoO6/g-C3N4 | 300 W Xe lamp (λ>420 nm) | RhB | 97.6% | 13.1 | [ |
Cd0.5Zn0.5S/ g-C3N4 | 350 W Xe lamp (λ>420 nm) | RhB | 97.8% | 13 | [ |
g-C3N4/AgBr/BP | PL-X300D xenon light | MO | 98.0% | — | [ |
S-g-C3N4/TiO2 | 300 W Xe lamp | Congo Red | 96.2% | 8.2 | [ |
g-C3N4/Bi2WO6 | 300 W Xe lamp (λ>420 nm) | Tetracycline | 81.4% | 2.85 | [ |
g-C3N4/Si-Fe2O3 | 150 W Xe lamp | 2-chlorophenol | 96.6% | — | [ |
Bi2O2CO3/g-C3N4 | 300 W Xe lamp (λ>400 nm) | Tetracycline | 96% | 3.96 | [ |
PDI-Ala/S-C3N4 | 350 W Xe lamp (λ>420 nm) | Tetracycline | 90% | 2.14 | [ |
Table 3. g-C3N4-based S-scheme heterojunctions for photocatalytic degradation of pollutants reported in recent years.
S-scheme heterojunction | Light source (wavelength/nm) | Application | Removal rate | Enhancement factor versus g-C3N4 | Refs. |
---|---|---|---|---|---|
ZnFe2O4/g-C3N4 | 8 W LED light | Uranium (VI) | 94.62% | — | [ |
Bi2WO6/g-C3N4 | 300 W Xe lamp (λ>400 nm) | Ammonium dinitramide | 98.93% | 7.17 | [ |
WO3/g-C3N4 | 300 W Xe lamp | Tetracycline | 90.54% | 2.25 | [ |
ZnO/g-C3N4 | 350 W Xe lamp (λ>420 nm) | MB | 92.5% | 8.5 | [ |
g-C3N4/ZrO2 | 300 W Xe lamp | Acid orange II | 98% | — | [ |
Bi2O3/P-C3N4 | 500 W Xe lamp | Levofloxacin | 89.2% | 1.33 | [ |
Bi2MoO6/g-C3N4 | 300 W Xe lamp (λ>420 nm) | RhB | 97.6% | 13.1 | [ |
Cd0.5Zn0.5S/ g-C3N4 | 350 W Xe lamp (λ>420 nm) | RhB | 97.8% | 13 | [ |
g-C3N4/AgBr/BP | PL-X300D xenon light | MO | 98.0% | — | [ |
S-g-C3N4/TiO2 | 300 W Xe lamp | Congo Red | 96.2% | 8.2 | [ |
g-C3N4/Bi2WO6 | 300 W Xe lamp (λ>420 nm) | Tetracycline | 81.4% | 2.85 | [ |
g-C3N4/Si-Fe2O3 | 150 W Xe lamp | 2-chlorophenol | 96.6% | — | [ |
Bi2O2CO3/g-C3N4 | 300 W Xe lamp (λ>400 nm) | Tetracycline | 96% | 3.96 | [ |
PDI-Ala/S-C3N4 | 350 W Xe lamp (λ>420 nm) | Tetracycline | 90% | 2.14 | [ |
Fig. 16. (A) Photocatalytic activities of HCHO removal under full spectrum light. (B) Pseudo second-order reaction kinetic fits and (C) HCHO conversion, CO2 and CO selectivity on as-synthesized samples. (D) The cycle tests of the sample under full spectrum light. Reproduced with permission from Ref. [143]. Copyright 2021, Elsevier.
Fig. 17. The antibacterial effects without illumination, under illumination and corresponding fluorescent dye mapping images over (A-C) the blank experiment, (D-F) g-C3N4, (G-I) CeO2, and (J-L) CeO2/g-C3N4 composite, respectively. Reproduced with permission from Ref. [144]. Copyright 2020, Wiley-VCH.
Fig. 18. (A) Photocatalytic NO oxidation and (B) stability tests of the as-prepared samples. (C) In situ DRIFT spectra of the photocatalytic reaction of NO over the prepared sample. Reproduced with permission from Ref. [145]. Copyright 2021, Elsevier.
[1] |
C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Adv. Mater. 33 (2021) 2003521.
DOI URL |
[2] |
W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3 (2015) 19936-19947.
DOI URL |
[3] |
X. Chen, J. Wang, Y. Chai, Z. Zhang, Y. Zhu, Adv. Mater. 33 (2021) 2007479.
DOI URL |
[4] |
Z. Wei, W. Wang, W. Li, X. Bai, J. Zhao, E. Tse, D. Phillips, Y. Zhu, Angew. Chem. Int. Ed. 60 (2021) 8236-8242.
DOI URL |
[5] |
W. Lu, Y. Li, M. Yang, X. Jiang, Y. Zhang, Y. Xing, ACS Appl. Energy Mater. 3 (2020) 8190-8197.
DOI URL |
[6] |
Q. Su, Y. Li, R. Hu, F. Song, S. Liu, C. Guo, S. Zhu, W. Liu, J. Pan, Adv. Sustainable Syst. 4 (2020) 2000130.
DOI URL |
[7] |
S. Wageh, A. Al-Ghamdi, O. Al-Hartomy, M. Alotaibi, L. Wang, Chin. J. Catal. 43 (2022) 586-588.
DOI URL |
[8] |
Y. Yang, H. Tan, B. Cheng, J. Fan, J. Yu, W. Ho, Small Methods 5 (2021) 2001042.
DOI URL |
[9] |
R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang, Y. Ng, X. Li, Chin. J. Catal. 42 (2021) 25-36.
DOI URL |
[10] |
W. Lu, M. Yang, X. Jiang, Y. Yu, X. Liu, Y. Xing, Chem. Eng. J. 382 (2020) 122943.
DOI URL |
[11] |
W. Yu, J. Zhang, T. Peng, Appl. Catal. B 181 (2016) 220-227.
DOI URL |
[12] |
Y. Jiang, Z. Sun, Q. Chen, C. Cao, Y. Zhao, W. Yang, L. Zeng, L. Huang, Appl. Surf. Sci. 571 (2022) 151287.
DOI URL |
[13] |
Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
[14] |
L. Zhou, Y. Li, S. Yang, M. Zhang, Z. Wu, R. Jin, Y. Xing, Chem. Eng. J. 420 (2021) 130361.
DOI URL |
[15] |
R. He, H. Liu, H. Liu, D. Xu, L. Zhang, J. Mater. Sci. Technol. 52 (2020) 145-151.
DOI URL |
[16] | Z. Wang, J. Fan, B. Cheng, J. Yu, J. Xu, Mater. Today Phys 15 (2020) 100279. |
[17] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[18] |
L. Liu, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 42 (2021) 46-55.
DOI URL |
[19] | Z. Jiang, Q. Cheng, Q. Zheng, R. Shen, P. Zhang, X. Li, Acta Phys. -Chim. Sin. 37 (2021) 2010059. |
[20] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[21] |
Z. Dai, Y. Zhen, Y. Sun, L. Li, D. Ding, Chem. Eng. J. 415 (2021) 129002.
DOI URL |
[22] |
X. Fei, L. Zhang, J. Yu, B. Zhu, Front. Nanotechnol. 3 (2021) 698351.
DOI URL |
[23] |
P. Chen, B. Lei, X. Dong, H. Wang, J. Sheng, W. Cui, J. Li, Y. Sun, Z. Wang, F. Dong, ACS Nano 14 (2020) 15841-15852.
DOI URL |
[24] |
J. Xiao, X. Liu, L. Pan, C. Shi, X. Zheng, J. Zou, ACS Catal 10 (2020) 12256-12283.
DOI URL |
[25] |
Y. Zhou, Z. Wang, L. Huang, S. Zaman, K. Lei, T. Yue, Z. Li, B. You, B. Xia, Adv. Energy Mater. 11 (2021) 2003159.
DOI URL |
[26] |
Z. Liang, R. Shen, Y. Ng, P. Zhang, Q. Xiang, X. Li, J. Mater. Sci. Technol. 56 (2020) 89-121.
DOI URL |
[27] |
L. Cheng, H. Zhang, X. Li, J. Fan, Q. Xiang, Small 17 (2020) 2005231.
DOI URL |
[28] |
Y. Li, S. Wang, W. Chang, L. Zhang, Z. Wu, R. Jin, Y. Xing, Appl. Catal. B 274 (2020) 119116.
DOI URL |
[29] | Y. Li, M. Zhang, L. Zhou, S. Yang, Z. Wu, Y. Ma, Acta Phys.-Chim. Sin. 37 (2021) 2009030. |
[30] |
B. Rhimi, C. Wang, D. Bahnemann, J. Phys. Energy 2 (2020) 042003.
DOI URL |
[31] |
C. Bie, B. Cheng, J. Fan, W. Ho, J. Yu, EnergyChem 3 (2021) 100051.
DOI URL |
[32] |
W. Zhang, A. Mohamed, W. Ong, Angew. Chem. Int. Ed. 59 (2020) 22894-22915.
DOI URL |
[33] |
D. Wang, F. Yin, B. Cheng, Y. Xia, J. Yu, W. Ho, Rare Met 40 (2021) 2369-2380.
DOI URL |
[34] |
Y. Li, R. Jin, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6 (2016) 1601273.
DOI URL |
[35] |
Y. Li, X. Li, H. Zhang, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 56 (2020) 69-88.
DOI URL |
[36] | X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang, Acta Phys. -Chim. Sin. 37 (2021) 2010027. |
[37] |
B. Zhu, L. Zhang, B. Cheng, Y. Yu, J. Yu, Chin. J. Catal. 42 (2021) 115-122.
DOI URL |
[38] |
X. Lian, W. Xue, S. Dong, E. Liu, H. Li, K. Xu, J. Hazard. Mater. 412 (2021) 125217.
DOI URL |
[39] |
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447.
DOI URL |
[40] |
W. Wang, W. Zhao, H. Zhang, X. Dou, H. Shi, Chin. J. Catal. 42 (2021) 97-106.
DOI URL |
[41] |
R. Kavitha, P. Nithya, S. Kumar, Appl. Surf. Sci. 508 (2020) 145142.
DOI URL |
[42] |
T. Zhang, M. Maihemlli, K. Okitsu, D. Talifur, Y. Tursun, A. Abulizi, Appl. Surf. Sci. 556 (2021) 149828.
DOI URL |
[43] |
R. Shen, K. He, A. Zhang, N. Li, Y. Ng, P. Zhang, J. Hu, X. Li, Appl. Catal. B 291 (2021) 120104.
DOI URL |
[44] |
T. Pan, D. Chen, W. Xu, J. Fang, S. Wu, Z. Liu, K. Wu, Z. Fang, J. Hazard. Mater. 393 (2020) 122366.
DOI URL |
[45] |
Y. Li, M. Gu, X. Zhang, J. Fan, K. Lv, S. Carabineiro, F. Dong, Mater. Today 41 (2020) 270-303.
DOI URL |
[46] |
Z. Li, Z. Wu, R. He, L. Wan, S. Zhang, J. Mater. Sci. Technol. 56 (2020) 151-161.
DOI URL |
[47] |
X. Liu, J. Li, Semicond. Sci. Technol. 36 (2021) 045025.
DOI URL |
[48] | D. Liu, S. Chen, R. Li, T. Peng, Acta Phys.-Chim. Sin. 37 (2021) 2010017. |
[49] | R. He, R. Chen, J. Luo, S. Zhang, D. Xu, Acta Phys. -Chim. Sin. 37 (2021) 2011022. |
[50] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[51] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
[52] |
H. Ge, F. Xu, B. Cheng, J. Yu, W. Ho, ChemCatChem 11 (2019) 6301-6309.
DOI URL |
[53] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[54] |
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
[55] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[56] |
J. Peng, J. Shen, X. Yu, H. Tang, Q. Zulfiqar, Chin. Liu, J. Catal. 42 (2021) 87-96.
DOI URL |
[57] | Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. -Chim. Sin. 37 (2021) 2009097. |
[58] |
B. Zhang, H. Shi, X. Hu, Y. Wang, E. Liu, J. Fan, J. Phys. D: Appl. Phys. 53 (2020) 205101.
DOI URL |
[59] |
K. Zhang, M. Zhou, C. Yu, K. Yang, X. Li, W. Dai, J. Guan, Q. Shu, W. Huang, Dyes Pigments 180 (2020) 108525.
DOI URL |
[60] |
X. Zhang, Y. Zhang, X. Jia, N. Zhang, R. Xiu, X. Zhang, Z. Wang, M. Yu, Sep. Purif. Technol. 268 (2021) 118691.
DOI URL |
[61] |
Y. Huo, J. Zhang, K. Dai, C. Liang, ACS Appl. Energy Mater. 4 (2021) 956-968.
DOI URL |
[62] | Y. Chen, L. Li, Q. Xu, T. Duren, J. Fan, D. Ma, Acta Phys. -Chim. Sin. 37 (2021) 2009080. |
[63] |
J. Liu, W. Fu, Y. Liao, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 91 (2021) 224-240.
DOI URL |
[64] |
Q. Li, W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan, H. Shi, J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[65] |
Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P. Wong, Chin. J. Catal. 41 (2020) 140-153.
DOI URL |
[66] | Y. Liu, X. Hao, H. Hu, Z. Jin, Acta Phys. -Chim. Sin. 37 (2021) 2008030. |
[67] |
J. Wei, Y. Chen, H. Zhang, Z. Zhuang, Y. Yu, Chin. J. Catal. 42 (2021) 78-86.
DOI URL |
[68] |
S. Wang, J. Zhang, B. Li, H. Sun, S. Wang, Energy Fuels 35 (2021) 6504-6526.
DOI URL |
[69] |
X. Xu, J. Wang, Y. Shen, Langmuir 37 (2021) 7254-7263.
DOI URL |
[70] |
Z. Li, W. Huang, J. Liu, K. Lv, Q. Li, ACS Catal 11 (2021) 8510-8520.
DOI URL |
[71] |
D. Qin, Y. Xia, Q. Li, C. Yang, Y. Qin, K. Lv, J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[72] |
Y. Gao, F. Chen, Z. Chen, H. Shi, J. Mater. Sci. Technol. 56 (2020) 227-235.
DOI URL |
[73] |
S. Wageh, A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang, Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[74] | K. Li, M. Zhang, X. Ou, R. Li, Q. Li, J. Fan, K. Lv, Acta Phys. -Chim. Sin. 37 (2021) 2008010. |
[75] |
P. Wang, Y. Liu, N. Jiang, R. Jing, S. Li, Q. Zhang, H. Liu, J. Xiu, Z. Li, Y. Liu, J. Mol. Liq. 329 (2021) 115540.
DOI URL |
[76] |
M. Benaissa, N. Abbas, S. Arni, N. Elboughdiri, A. Moumen, M. Hamdy, H. Abd-Rabboh, A. Galal, M. Al-Metwaly, M. Ahmed, Opt. Mater. 118 (2021) 111237.
DOI URL |
[77] |
J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Chin. J. Catal. 42 (2021) 56-68.
DOI URL |
[78] |
Y. Chen, F. Su, H. Xie, R. Wang, C. Ding, J. Huang, Y. Xu, L. Ye, Chem. Eng. J. 404 (2021) 126498.
DOI URL |
[79] |
B. Zhang, H. Shi, Y. Yan, C. Liu, X. Hu, E. Liu, J. Fan, Colloids Surf. A 608 (2021) 125598.
DOI URL |
[80] |
X. Dou, Q. Li, H. Shi, CrystEngComm 23 (2021) 4638.
DOI URL |
[81] |
H. Alshaikh, L. Al-Hajji, M. Mahmoud, A. Ismail, Sep. Purif. Technol. 272 (2021) 118914.
DOI URL |
[82] |
W.E.T. Dou, Y. Zhu, J. Liu, L. Jing, Mater. Res. Bull. 142 (2021) 111416.
DOI URL |
[83] | S. Guru, G R, Int. J. Hydrog. Energy 46 (2021) 12145-12157. |
[84] |
Y. Yang, D. Zhang, J. Fan, Y. Liao, Q. Xiang, Sol. RRL 5 (2021) 2000351.
DOI URL |
[85] |
Y. Fu, Y. Zhang, X. Xie, H. Wang, L. Wei, M. Ma, Q. Yan, Sep. Purif. Technol. 274 (2021) 119032.
DOI URL |
[86] | X. Li, J. Liu, J. Huang, C. He, Z. Feng, Z. Chen, L. Wan, F. Deng, Acta Phys. -Chim. Sin. 37 (2021) 2010030. |
[87] |
J. Wang, S. Lin, N. Tian, T. Ma, Y. Zhang, H. Huang, Adv. Funct. Mater. 31 (2020) 2008008.
DOI URL |
[88] | S. Wageh, A. Al-Ghamdi, L. Liu, Acta Phys. -Chim. Sin. 37 (2021) 2010024. |
[89] |
J. Yi, W. EL-ALami, Y. Song, H. Li, P. Ajayan, H. Xu, Chem. Eng. J. 382 (2020) 122812.
DOI URL |
[90] |
W. Zhong, D. Gao, H. Yu, J. Fan, J. Yu, Chem. Eng. J. 419 (2021) 129652.
DOI URL |
[91] |
H. Shi, Y. Li, X. Wang, H. Yu, J. Yu, Appl. Catal. B 297 (2021) 120414.
DOI URL |
[92] |
P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44.
DOI URL |
[93] |
W. Chen, G. Huang, H. Song, J. Zhang, J. Mater. Chem. A 8 (2020) 20963-20969.
DOI URL |
[94] |
W. Yu, S. Zhang, J. Chen, P. Xia, M. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A 6 (2018) 15668-15674.
DOI URL |
[95] |
S. Ng, M. Lau, W. Ong, Sol. RRL 5 (2021) 2000535.
DOI URL |
[96] |
Y. Bao, S. Song, G. Yao, S. Jiang, Sol. RRL 5 (2021) 2100118.
DOI URL |
[97] |
R. Shen, X. Lu, Q. Zheng, Q. Chen, Y. Ng, P. Zhang, X. Li, Sol. RRL 5 (2021) 2100177.
DOI URL |
[98] |
X. Du, S. Song, Y. Wang, W. Jin, T. Ding, Y. Tian, X. Li, Catal. Sci. Technol. 11 (2021) 2734-2744.
DOI URL |
[99] |
T. Yan, H. Liu, Z. Jin, Energy Fuels 35 (2021) 856-867.
DOI URL |
[100] |
B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988-997.
DOI URL |
[101] |
Y. Zhu, J. Yang, C. Bian, W. Yang, X. Meng, Z. Lin, Y. Li, Y. Zhao, W. Fu, H. Yang, Catal. Lett. 151 (2021) 3067-3078.
DOI URL |
[102] |
Q. Liu, X. He, J. Peng, X. Yu, H. Tang, J. Zhang, Chin. J. Catal. 42 (2021) 1478-1487.
DOI URL |
[103] |
D. Ren, W. Zhang, Y. Ding, R. Shen, Z. Jiang, X. Lu, X. Li, Sol. RRL 4 (2019) 1900423.
DOI URL |
[104] |
Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, Appl. Surf. Sci. 495 (2019) 143555.
DOI URL |
[105] |
B. Zhang, X. Hu, E. Liu, J. Fan, Chin. J. Catal. 42 (2021) 1519-1529.
DOI URL |
[106] |
Y. Zhen, C. Yang, H. Shen, W. Xue, C. Gu, J. Feng, Y. Zhang, F. Fu, Y. Liang, Phys. Chem. Chem. Phys. 22 (2020) 26278-26288.
DOI URL |
[107] |
X. Chen, X. Ke, J. Zhang, C. Yang, K. Dai, C. Liang, Ceram. Int. 47 (2021) 13488-13499.
DOI URL |
[108] |
X. Chen, T. Hu, J. Zhang, C. Yang, K. Dai, C. Pan, J. Alloys Compd. 863 (2021) 158068.
DOI URL |
[109] |
X. Li, J. Zhang, Y. Huo, K. Dai, S. Li, S. Chen, Appl. Catal. B 280 (2021) 119452.
DOI URL |
[110] |
J. Shi, B. Zheng, L. Mao, C. Cheng, Y. Hu, H. Wang, G. Li, D. Jing, X. Liang, Int. J. Hydrog. Energy 46 (2021) 2927-2935.
DOI URL |
[111] |
F. Mei, Z. Li, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 41 (2020) 41-49.
DOI URL |
[112] |
J. Luo, Z. Lin, Y. Zhao, S. Jiang, S. Song, Chin. J. Catal. 41 (2020) 122-130.
DOI URL |
[113] | Z. Jin, L. Zhang, G. Wang, Y. Li, Y. Wang, Sustain. Energy Fuels 4 (2020) 5088-5101. |
[114] |
H. Wu, S. Meng, J. Zhang, X. Zheng, Y. Wang, S. Chen, G. Qi, X. Fu, Appl. Surf. Sci. 505 (2020) 144638.
DOI URL |
[115] |
D. Gogoi, A. Shah, M. Qureshi, A. Golder, N. Peela, Appl. Surf. Sci. 558 (2021) 149900.
DOI URL |
[116] |
R. Li, W. Cheng, M. Richter, J. DuChene, W. Tian, C. Li, H. Atwater, ACS Energy Lett 6 (2021) 1849-1856.
DOI URL |
[117] |
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936.
DOI URL |
[118] |
X. Li, J. Xiong, X. Gao, J. Huang, Z. Feng, Z. Chen, Y. Zhu, J. Alloys Compd. 802 (2019) 196-209.
DOI URL |
[119] |
X. Liang, J. Zhao, T. Wang, Z. Zhang, M. Qu, C. Wang, ACS Appl. Mater. Interfaces 13 (2021) 33034-33044.
DOI URL |
[120] |
Y. Wang, X. Shang, J. Shen, Z. Zhang, D. Wang, J. Lin, J. Wu, X. Fu, X. Wang, C. Li, Nat. Commun. 11 (2020) 3043.
DOI URL |
[121] |
A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, Appl. Catal. B 289 (2021) 120039.
DOI URL |
[122] |
Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang, J. Zhao, Angew. Chem. Int. Ed. 60 (2021) 910-916.
DOI URL |
[123] |
X. Tao, Y. Wang, J. Qu, Y. Zhao, R. Li, C. Li, J. Mater. Chem. A 9 (2019) 19631-19636.
DOI URL |
[124] |
W. Yu, H. Fu, T. Mueller, B. Brunschwig, N. Lewis, J. Chem. Phys. 153 (2020) 020902.
DOI URL |
[125] |
X. Ke, J. Zhang, K. Dai, K. Fan, C. Liang, Sol. RRL 5 (2021) 2000805.
DOI URL |
[126] |
K. Alkanad, A. Hezam, Q. Drmosh, S. Chandrashekar, A. Alobaid, I. Warad, M. Bajiri, L. Krishnappagowda, Sol. RRL 5 (2021) 2100501.
DOI URL |
[127] |
Z. Wang, B. Cheng, L. Zhang, J. Yu, H. Tan, Sol. RRL 6 (2022) 2100587.
DOI URL |
[128] |
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B 272 (2020) 119006.
DOI URL |
[129] |
X. Zhang, D. Kim, J. Yan, L. Lee, ACS Appl. Mater. Interfaces 13 (2021) 9762-9770.
DOI URL |
[130] |
S. Kang, H. Khan, C. Lee, Sol. Energy Mater. Sol. Cells 221 (2021) 110890.
DOI URL |
[131] |
L. Xiong, J. Tang, Adv. Energy Mater. 11 (2021) 2003216.
DOI URL |
[132] |
K. Zhang, D. Li, Q. Tian, H. Cao, F. Orudzhev, I. Zvereva, J. Xu, C. Wang, Ceram. Int. 47 (2021) 17109-17119.
DOI URL |
[133] |
L. Jing, Y. Xu, M. Zhou, J. Deng, W. Wei, M. Xie, Y. Song, H. Xu, H. Li, J. Hazard. Mater. 396 (2020) 122659.
DOI URL |
[134] |
J. Liu, X. Wei, W. Sun, X. Guan, X. Zheng, J. Li, Environ. Res. 197 (2021) 111136.
DOI URL |
[135] |
H. Huu, M. Thi, V. Nguyen, L. Thi, T. Phan, Q. Hoang, H. Luc, S. Kim, V. Vo, Sci. Rep. 11 (2021) 14787.
DOI URL |
[136] |
X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, B. Peng, Z. Wang, Nano Energy 81 (2021) 105671.
DOI URL |
[137] |
H. Shen, T. Peppel, J. Strunk, Z. Sun, Sol. RRL 4 (2020) 1900546.
DOI URL |
[138] |
X. Yu, S. Ng, L. Putri, L. Tan, A. Mohamed, W. Ong, Small 17 (2021) 2006851.
DOI URL |
[139] |
A. Chen, M. Yang, S. Wang, Q. Qian, Front. Nanotechnol. 3 (2021) 723120.
DOI URL |
[140] |
M. Khan, F. Zhang, M. Osada, S. Mao, S. Shen, Sol. RRL 4 (2020) 1900435.
DOI URL |
[141] |
R. Chen, J. Li, H. Wang, P. Chen, X. Dong, Y. Sun, Y. Zhou, F. Dong, J. Mater. Chem. A 9 (2021) 20184-20210.
DOI URL |
[142] |
Y. Wang, K. Wang, J. Wang, X. Wu, G. Zhang, J. Mater. Sci. Technol. 56 (2020) 236-243.
DOI URL |
[143] |
M. Song, Y. Wu, C. Du, Y. Su, J. Colloid Interface Sci. 588 (2021) 357-368.
DOI URL |
[144] |
P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
[145] |
Y. Ren, Y. Li, X. Wu, J. Wang, G. Zhang, Chin. J. Catal. 42 (2021) 69-77.
DOI URL |
[146] |
L. Ai, R. Shi, J. Yang, K. Zhang, T. Zhang, S. Lu, Small 17 (2021) 2007523.
DOI URL |
[147] |
W. Ong, L. Putri, A. Mohamed, Chem. Eur. J. 26 (2020) 9710-9748.
DOI URL |
[148] |
X. Xiao, L. Zhang, H. Meng, B. Jiang, H. Fu, Sol. RRL 5 (2021) 2000609.
DOI URL |
[149] |
L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668.
DOI URL |
[150] |
M. Sayed, B. Zhu, P. Kuang, X. Liu, B. Cheng, A. Ghamdi, S. Wageh, L. Zhang, J. Yu, Adv. Sustainable Syst. 6 (2021) 2100264.
DOI URL |
[151] |
R. Rajendran, S. Vignesh, S. Suganthi, V. Raj, G. Kavitha, B. Palanivel, M. Shkir, H. Algarni, J. Phys. Chem. Solids 161 (2022) 110391.
DOI URL |
[152] |
M. Barzegar, M. Sabzehmeidani, M. Ghaedi, V. Avargani, Z. Moradi, V. Roy, H. Heidari, Chem. Eng. Res. Des. 174 (2021) 307-318.
DOI URL |
[153] |
N. Rajalakshmi, D. Barathi, S. Meyvel, P. Sathya, Inorg. Chem. Commun. 132 (2021) 108849.
DOI URL |
[154] |
V. Pham, D. Mai, D. Bui, T. Man, B. Zhu, L. Zhang, J. Sangkaworn, J. Tantirungrotechai, V. Reutrakul, T. Cao, Environ. Pollut. 286 (2021) 117510.
DOI URL |
[155] |
R. Nejat, Z. Najminejad, F. Fazlali, S. Shahraki, Z. Khazaee, Inorg. Chem. Commun. 132 (2021) 108842.
DOI URL |
[156] |
M. Preeyanghaa, V. Vinesh, B. Neppolian, Chemosphere 287 (2022) 132380.
DOI URL |
[157] |
D. Bui, T. Nguyen, T. Vo, T. Cao, S. You, V. Pham, ACS Appl, Nano Mater 4 (2021) 9333-9343.
DOI URL |
[158] |
R. Tang, D. Gong, Y. Deng, S. Xiong, J. Deng, L. Li, Z. Zhou, J. Zheng, L. Su, L. Yang, Chem. Eng. J. 427 (2022) 131809.
DOI URL |
[159] |
C. Swamy, A. Hezam, A. Ramesh, D. Ramakrishnegowda, D. Purushothama, J. Krishnegowda, K. Rangappa, S. Shivanna, J. Photochem. Photobiol. A 418 (2021) 113394.
DOI URL |
[1] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[2] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[3] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[4] | Yihan Chen, Longxing Su, Mingming Jiang, Xiaosheng Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection [J]. J. Mater. Sci. Technol., 2022, 105(0): 259-265. |
[5] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[6] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
[7] | Jingyi Ma, Xinyu Chen, Yaochen Sheng, Ling Tong, Xiaojiao Guo, Minxing Zhang, Chen Luo, Lingyi Zong, Yin Xia, Chuming Sheng, Yin Wang, Saifei Gou, Xinyu Wang, Xing Wu, Peng Zhou, David Wei Zhang, Chenjian Wu, Wenzhong Bao. Top gate engineering of field-effect transistors based on wafer-scale two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2022, 106(0): 243-248. |
[8] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[9] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[10] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[11] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
[12] | Xin Li, Xiaoke Lu, Minghang Li, Jimei Xue, Fang Ye, Xiaomeng Fan, Yongsheng Liu, Laifei Cheng, Litong Zhang. A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature [J]. J. Mater. Sci. Technol., 2022, 125(0): 29-37. |
[13] | Zhouzheng Jin, Jingru Li, Yiming Zhang, Dan Liu, Hui Ding, Bhekie B. Mamba, Alex T. Kuvarega, Jianzhou Gui. Rational design of efficient visible-light photocatalysts (1D@2D/0D) ZnO@Ni-doped BiOBr/Bi heterojunction: Considerations on hierarchical structures, doping and SPR effect [J]. J. Mater. Sci. Technol., 2022, 125(0): 38-50. |
[14] | Zhiwei Zhao, Xiaofeng Li, Kai Dai, Jinfeng Zhang, Graham Dawson. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance [J]. J. Mater. Sci. Technol., 2022, 117(0): 109-119. |
[15] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||