J. Mater. Sci. Technol. ›› 2022, Vol. 112: 222-229.DOI: 10.1016/j.jmst.2021.09.059
• Research Article • Previous Articles Next Articles
Lili Zhua,b, Bingbing Yanga,*(), Ziqiang Wua,b, Changdian Lia, Han Lia,b, Hui Lia,b, Yanan Huanga, Xiaoguang Zhua, Xuebin Zhua,*(
), Yuping Suna,c,d
Received:
2021-08-17
Revised:
2021-09-17
Accepted:
2021-09-22
Published:
2021-12-26
Online:
2021-12-26
Contact:
Bingbing Yang,Xuebin Zhu
About author:
xbzhu@issp.ac.cn (X. Zhu).Lili Zhu, Bingbing Yang, Ziqiang Wu, Changdian Li, Han Li, Hui Li, Yanan Huang, Xiaoguang Zhu, Xuebin Zhu, Yuping Sun. Metal/antiperovskite metal nitride composites Ag/AgNNi3 as novel efficient electrocatalysts for hydrogen evolution reaction in alkaline media[J]. J. Mater. Sci. Technol., 2022, 112: 222-229.
Fig. 1. (a) A scheme for the fabrication of the AgxNi1-xNNi3 (0 ≤ x ≤ 0.80) on the ITO substrates by CSD. (b) A physical picture for the thin film of AgxNi1-xNNi3 (0 ≤ x ≤ 0.80), the area of the film is 1 cm × 1 cm. (c) The unit cell structure of the antiperovskite nitride AgxNi1-xNNi3 (0 ≤ x ≤ 0.80).
Fig. 2. (a) XRD patterns of Ag0.57Ni0.43NNi3, Ag0.76Ni0.24NNi3, 0.08 Ag/Ag0.80Ni0.20NNi3, 0.18 Ag/Ag0.80Ni0.20NNi3 and 0.25 Ag/Ag0.80Ni0.20NNi3. (b-d) AFM images of Ag0.57Ni0.43NNi3, 0.18 Ag/Ag0.80Ni0.20NNi3 and 0.25 Ag/Ag0.80Ni0.20NNi3, respectively.
Fig. 3. TEM (a) and HRTEM (b) results of Ag0.76Ni0.24NNi3. TEM (c, d), HRTEM (e), HAADF-STEM (f) and EDX element mapping (g-j) results of 0.18 Ag/Ag0.80Ni0.20NNi3.
Fig. 4. Electrocatalytic HER performances for all prepared samples measured in 1 mol L-1 KOH electrolyte. (a) LSV results for Ag0.57Ni0.43NNi3, Ag0.76Ni0.24NNi3, 0.08 Ag /Ag0.80Ni0.20NNi3, 0.18 Ag/Ag0.80Ni0.20NNi3, 0.25 Ag/Ag0.80Ni0.20NNi3 and the commercial 20 wt.% Pt/C at a scan rate of 5 mV s-1. (b) Tafel plots derived from the LSV curves. (c) Comparisons of the ƞonset, ƞ10, ƞ50 and Tafel slope. (d) Cdl results for the estimation of ESCA. (e) EIS of 0.18 Ag/Ag0.80Ni0.20NNi3 at different overpotentials and the inset is the equivalent electrical circuit to model HER process. (f) LSV results of 0.18 Ag/Ag0.80Ni0.20NNi3 before and after 3000 CV cycles, and the inset is the chronoamperometry results for the 0.18 Ag/Ag0.80Ni0.20NNi3 at the overpotential of 81 mV for 12 h. All results are collected without iR compensation.
Catalysts | Cdl (mF cm-2) | ESCA (cm2) |
---|---|---|
Ag0.57Ni0.43NNi3 | 1.15 | 28.75 |
Ag0.76Ni0.24NNi3 | 0.96 | 24.00 |
0.08 Ag/Ag0.80Ni0.20NNi3 | 1.25 | 31.25 |
0.18 Ag/Ag0.80Ni0.20NNi3 | 3.98 | 99.50 |
0.25 Ag/Ag0.80Ni0.20NNi3 | 0.82 | 20.50 |
Table 1. Values of Cdl and ESCA for all derived Ag/AgxNi1-xNNi3 (0 ≤ x ≤ 0.80).
Catalysts | Cdl (mF cm-2) | ESCA (cm2) |
---|---|---|
Ag0.57Ni0.43NNi3 | 1.15 | 28.75 |
Ag0.76Ni0.24NNi3 | 0.96 | 24.00 |
0.08 Ag/Ag0.80Ni0.20NNi3 | 1.25 | 31.25 |
0.18 Ag/Ag0.80Ni0.20NNi3 | 3.98 | 99.50 |
0.25 Ag/Ag0.80Ni0.20NNi3 | 0.82 | 20.50 |
Catalysts | ƞonset(mV) | ƞ10(mV) | ƞ50(mV) | Tafel(mV dec-1) | ESCA(cm2) | Rct(Ω) | j0(μA cm-2) |
---|---|---|---|---|---|---|---|
Ag0.57Ni0.43NNi3 | 30 | 135 | 385 | 81 | 28.75 | 3.68 | 0.11 |
Ag0.76Ni0.24NNi3 | 36 | 122 | 263 | 78 | 24.00 | 2.26 | 0.12 |
0.08 Ag/Ag0.80Ni0.20NNi3 | 15 | 85 | 194 | 62 | 31.25 | 6.17 | 0.15 |
0.18 Ag/Ag0.80Ni0.20NNi3 | 13 | 81 | 171 | 59 | 99.50 | 1.31 | 0.30 |
0.25 Ag/Ag0.80Ni0.20NNi3 | 92 | 162 | 258 | 62 | 20.50 | 3.62 | 0.01 |
Table 2. Summary of HER activities of all derived Ag/AgxNi1-xNNi3 (0 ≤ x ≤ 0.80).
Catalysts | ƞonset(mV) | ƞ10(mV) | ƞ50(mV) | Tafel(mV dec-1) | ESCA(cm2) | Rct(Ω) | j0(μA cm-2) |
---|---|---|---|---|---|---|---|
Ag0.57Ni0.43NNi3 | 30 | 135 | 385 | 81 | 28.75 | 3.68 | 0.11 |
Ag0.76Ni0.24NNi3 | 36 | 122 | 263 | 78 | 24.00 | 2.26 | 0.12 |
0.08 Ag/Ag0.80Ni0.20NNi3 | 15 | 85 | 194 | 62 | 31.25 | 6.17 | 0.15 |
0.18 Ag/Ag0.80Ni0.20NNi3 | 13 | 81 | 171 | 59 | 99.50 | 1.31 | 0.30 |
0.25 Ag/Ag0.80Ni0.20NNi3 | 92 | 162 | 258 | 62 | 20.50 | 3.62 | 0.01 |
Fig. 5. (a) XRD patterns of the pristine 0.18 Ag/Ag0.80Ni0.20NNi3 sample and the 0.18 Ag/Ag0.80Ni0.20NNi3 sample after stability test. (b, c) SEM results of the pristine 0.18 Ag/Ag0.80Ni0.20NNi3 and the 0.18 Ag/Ag0.80Ni0.20NNi3 sample after stability test, the red circles mark the particles. (d) Dissociation mechanism for H2O bonded to metal atom Ag and ANNN. (e) Schematic illustration of the electrocatalytic process during the alkaline HER process.
[1] |
S. Sharma, S.K. Ghoshal, Renew. Sust. Energ. Rev. 43 (2015) 1151-1158.
DOI URL |
[2] |
J.A. Turner, Science 305 (2004) 972-974.
PMID |
[3] |
F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Int. J. Hydrog. Energy 32 (2007) 3797-3810.
DOI URL |
[4] |
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29 (2017) 1605838.
DOI URL |
[5] |
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, J. Am. Chem. Soc. 135 (2013) 9267-9270.
DOI PMID |
[6] |
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133 (2011) 7296-7299.
DOI URL |
[7] | Y. Hu, T. Xiong, M.S.J.T. Balogun, Y. Huang, D. Adekoya, S. Zhang, Y. Tong, Mater. Today Phys 15 (2020) 100267. |
[8] |
L. Wang, Z. Li, K. Wang, Q. Dai, C. Lei, B. Yang, Q. Zhang, L. Lei, M.K.H. Leung, Y. Hou, Nano Energy 74 (2020) 104850.
DOI URL |
[9] |
F. Cheng, L. Wang, H. Wang, C. Lei, B. Yang, Z. Li, Q. Zhang, L. Lei, S. Wang, Y. Hou, Nano Energy 71 (2020) 104621.
DOI URL |
[10] |
F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, J. Am. Chem. Soc. 140 (2018) 7748-7759.
DOI URL |
[11] |
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136 (2014) 6744-6753.
DOI PMID |
[12] |
C.X. Guo, C.M. Li, Chem. Commun. 54 (2018) 3262-3265.
DOI URL |
[13] |
K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu, Y. Hou, Nano Energy 77 (2020) 105162.
DOI URL |
[14] |
X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang, Z. Li, X. Zhang, L. Lei, C. Yuan, Y. Hou, J. Mater. Chem. A 7 (2019) 965-971.
DOI URL |
[15] |
M. Carmo, D.L. Fritz, J. Merge, D. Stolten, Int. J. Hydrogen Energ. 38 (2013) 4 901-4 934.
DOI URL |
[16] |
Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.-.Y. Wang, J. Am. Chem. Soc. 134 (2012) 9054-9057.
DOI URL |
[17] |
F. Yang, T. Xiong, P. Huang, S. Zhou, Q. Tan, H. Yang, Y. Huang, M.S. Balogun, Chem. Eng. J. 423 (2021) 130279.
DOI URL |
[18] |
X.Y. Lu, K.-.H. Ye, S.Q. Zhang, J.N. Zhang, J.D. Yang, Y.C. Huang, H.B. Ji, Chem. Eng. J. 428 (2022) 131027.
DOI URL |
[19] | J. Zhang, Y. Huang, X. Lu, J. Yang, Y. Tong, A.C.S. Sustain, Chem. Eng. 9 (2021) 8306-8314. |
[20] |
J.X. Yuan, X.D. Cheng, C.J. Lei, B. Yang, Z.J. Li, K. Luo, K.H.K. Lam, L.C. Lei, Yang Hou, K.K. Ostrikov, Engineering 7 (2021) 1306-1312.
DOI URL |
[21] |
F. Cheng, Z. Li, L. Wang, B. Yang, J. Lu, L. Lei, T. Ma, Y. Hou, Mater. Horiz. 8 (2021) 556-564.
DOI URL |
[22] |
K. Zeng, D. Zhang, Prog. Energ. Combust. 36 (2010) 307-326.
DOI URL |
[23] |
H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B 56 (2005) 9-35.
DOI URL |
[24] |
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137 (2015) 4347-4357.
DOI URL |
[25] | J. Durst, C. Simon, F. Hasche, H.A. Gasteiger, J. Electrochem. Soc. 162 (2015) F190-F203. |
[26] |
S. Xue, B. Garlyyev, S. Watzele, Y. Liang, J. Fichtner, M.D. Pohl, A.S. Bandarenka, Chemelectrochem 5 (2018) 2326-2329.
DOI URL |
[27] |
M.C. Tavares, S.A.S. Machado, L.H. Mazo, Electrochim. Acta 46 (2001) 4359-4369.
DOI URL |
[28] |
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-.Y. Wang, K.H. Lim, X. Wang, Energ. Environ. Sci. 7 (2014) 2624-2629.
DOI URL |
[29] |
P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53 (2014) 12855-12859.
DOI PMID |
[30] |
X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, J. Am. Chem. Soc. 137 (2015) 11900-11903.
DOI PMID |
[31] |
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Adv. Mater. 25 (2013) 5807-5813.
DOI URL |
[32] |
X. Li, H. Zhao, J. Liang, Y. Luo, G. Chen, X. Shi, S. Lu, S. Gao, J. Hu, Q. Liu, X. Sun, J. Mater. Chem. A 9 (2021) 6650-6670.
DOI URL |
[33] |
S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A.M. Asiri, Q. Wu, X. Sun, J. Mater. Chem. A 8 (2020) 19729-19745.
DOI URL |
[34] |
Y. Liu, B. Hu, S. Wu, M. Wang, Z. Zhang, B. Cui, L. He, M. Du, Appl. Catal. B 258 (2019) 117970.
DOI URL |
[35] | X. Li, R. Zhang, Y. Luo, Q. Liu, S. Lu, G. Chen, S. Gao, S. Chen, X. Sun, Sustain. Energ. Fuels 4 (2020) 3884-3887. |
[36] | S. Hao, L. Yang, D. Liu, R. Kong, G. Du, A.M. Asiri, Y. Yang, X. Sun, Chem. Com- mun. 53 (2017) 5710-5713. |
[37] |
L. Jia, B. Liu, Y. Zhao, W. Chen, D. Mou, J. Fu, Y. Wang, W. Xin, L. Zhao, J. Mater. Sci. 55 (2020) 16197-16210.
DOI URL |
[38] |
H. Kim, J. Kim, W. Guo, G.H. Han, S. Hong, S.Y. Kim, S.H. Ahn, ACS Sustain. Chem. Eng. 8 (2020) 15815-15821.
DOI URL |
[39] |
Q. Zhang, W. Chen, G. Chen, J. Huang, B. Ouyang, D. Chen, E. Kan, T. Lan, C. Li, H.-.S. Choi, K.K. Ostrikov, ACS Sustain. Chem. Eng. 9 (2021) 7454-7465.
DOI URL |
[40] |
F. Lei, Z. Tang, W. Xu, J. Yu, K. Li, J.C. Yu, ACS Sustain. Chem. Eng. 9 (2021) 5895-5901.
DOI URL |
[41] |
J. Sun, J. Lu, C. Huang, Q. Wu, L. Xia, Q. Xu, W. Yao, ACS Sustain. Chem. Eng. 9 (2021) 1994-2002.
DOI URL |
[42] |
T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W.-.B. Hu, X.-.W. Du, K. Davey, S.-.Z. Qiao, Adv. Mater. 31 (2019) 1807771.
DOI URL |
[43] |
C. Wu, J. Li, D. Zhang, B. Yang, L. Li, T. Zhou, C. Zhang, G. Yang, Y. Shan, Int. J. Hydrogen Energ. 41 (2016) 13915-13922.
DOI URL |
[44] |
Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 138 (2016) 7965-7972.
DOI URL |
[45] |
Q. Ma, C. Hu, K. Liu, S.-.F. Hung, D. Ou, H.M. Chen, G. Fu, N. Zheng, Nano Energy 41 (2017) 148-153.
DOI URL |
[46] |
W.-.F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. 49 (2013) 8896-8909.
DOI URL |
[47] |
B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, J. Am. Chem. Soc. 135 (2013) 19186-19192.
DOI URL |
[48] |
J. Xie, Y. Xie, Chem.-Eur. J. 22 (2016) 3588-3598.
DOI URL |
[49] |
J. Luo, H. Tang, X. Tian, S. Liao, J. Ren, W. Zhao, X. Qiao, Electrochim. Acta 314 (2019) 202-211.
DOI URL |
[50] |
P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D.V. Bellas, C. Lekka, E. Lidorikis, Mater. Sci. Eng. R 123 (2018) 1-55.
DOI URL |
[51] |
K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, J. Am. Chem. Soc. 137 (2015) 4119-4125.
DOI URL |
[52] |
Y. Zhang, B. Ouyang, J. Xu, S. Chen, R.S. Rawat, H.J. Fan, Adv. Energy Mater. 6 (2016) 1600221.
DOI URL |
[53] | T. Liu, M. Li, C. Jiao, M. Hassan, X. Bo, M. Zhou, H.-.L. Wang, J. Mater. Chem 5 (2017) 9377-9390. |
[54] |
H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao, Y. Zheng, S.-.Z. Qiao, ACS Nano 12 (2018) 12761-12769.
DOI URL |
[55] | M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, Y. Kimishima, Physica. C 470 (2010) S688-S690. |
[56] |
A. Houben, P. Muller, J. von Appen, H. Lueken, R. Niewa, R. Dronskowski, Angew. Chem. Int. Ed. 44 (2005) 7212-7215.
DOI URL |
[57] |
S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, S. Shamoto, Phys. Rev. Lett. 101 (2008) 205901.
DOI URL |
[58] |
Z. Hui, X. Tang, D. Shao, H. Lei, J. Yang, W. Song, H. Luo, X. Zhu, Y. Sun, Chem. Commun. 50 (2014) 12734-12737.
DOI URL |
[59] |
Y. Zhu, G. Chen, Y. Zhong, Y. Chen, N. Ma, W. Zhou, Z. Shao, Nat. Commun. 9 (2018) 2326.
DOI URL |
[60] |
M.A. Helal, A.K.M.A. Islam, Physica. B 406 (2011) 4564-4568.
DOI URL |
[61] |
S. She, Y. Zhu, H.A. Tahini, X. Wu, D. Guan, Y. Chen, J. Dai, Y. Chen, W. Tang, S. C. Smith, H. Wang, W. Zhou, Z. Shao, Small 16 (2020) 2006800.
DOI URL |
[62] |
J. Zhang, L. Zhang, L. Du, H.L. Xin, J.B. Goodenough, Z. Cui, Angew. Chem. Int. Ed. 59 (2020) 17488-17493.
DOI URL |
[63] |
B. Mao, P. Sun, Y. Jiang, T. Meng, D. Guo, J. Qin, M. Cao, Angew. Chem. Int. Ed. 59 (2020) 15232-15237.
DOI URL |
[64] |
J. Staszak-Jirkovsky, C.D. Malliakas, P.P. Lopes, N. Danilovic, S.S. Kota, K.-.C. Chang, B. Genorio, D. Strmcnik, V.R. Stamenkovic, M.G. Kanatzidis, N. M. Markovic, Nat. Mater. 15 (2016) 197-203.
DOI PMID |
[65] |
X. Wang, Z. Rui, H. Ji, Catal. Today 347 (2020) 124-133.
DOI URL |
[66] |
X. Yang, X. Yu, M. Lin, M. Ge, Y. Zhao, F. Wang, J. Mater. Chem. A 5 (2017) 13799-13806.
DOI URL |
[67] |
G. Kresse, J. Furthmuller, Comp. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[68] |
G. Kresse, J. Furthmuller, J. Hafner, Phys. Rev. B 50 (1994) 13181-13185.
PMID |
[69] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[70] |
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671-6687.
PMID |
[71] |
R.W. Schwartz, Chem. Mater. 9 (1997) 2325-2340.
DOI URL |
[72] |
Z. Hui, X. Tang, D. Shao, R. Wei, J. Yang, P. Tong, W. Song, X. Zhu, Y. Sun, J. Mater. Chem. C 3 (2015) 4438-4444.
DOI URL |
[73] |
V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Physica. B 405 (2010) 4615-4619.
DOI URL |
[74] |
Y. Benmalem, A. Abbad, W. Benstaali, H.A. Bentounes, T. Seddik, T. Lantri, J. Supercond, Nov. Magn. 31 (2018) 3485-3501.
DOI URL |
[75] |
C. Qin, S. Lei, X. Tang, J. Zhong, J. Li, J. He, Inorg. Chem. Commun. 116 (2020) 107904.
DOI URL |
[76] |
Y. Liu, J. Chen, J. Zhang, Z. Tang, H. Li, J. Yuan, RSC Adv. 10 (2020) 30245-30253.
DOI PMID |
[77] |
J. Wu, Y. Wang, Z. Liu, Y. Yan, Z. Zhu, New J. Chem. 44 (2020) 13815-13823.
DOI URL |
[78] |
Y. Ma, Z. He, Z. Wu, B. Zhang, Y. Zhang, S. Ding, C. Xiao, J. Mater. Chem. A 5 (2017) 24850-24858.
DOI URL |
[79] |
B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Chem. Mater. 28 (2016) 6934-6941.
DOI URL |
[80] |
X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G.I.N. Waterhouse, L.-.Z. Wu, C.-.H. Tung, T. Zhang, Adv. Energy Mater. 6 (2016) 1502585.
DOI URL |
[81] |
C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135 (2013) 16977-16987.
DOI URL |
[82] |
E. Liu, J. Li, L. Jiao, D. Huong Thi Thanh, Z. Liu, Z. Zhao, Y. Huang, K.M. Abraham, S. Mukerjee, Q. Jia, J. Am. Chem. Soc. 141 (2019) 3232-3239.
DOI URL |
[83] |
A.B. Anderson, E. Grantscharova, S. Seong, J. Electrochem. Soc. 143 (1996) 2075-2082.
DOI URL |
[84] |
J. Liu, Y. Zheng, D. Zhu, A. Vasileff, T. Ling, S.-.Z. Qiao, Nanoscale 9 (2017) 16616-16621.
DOI URL |
[85] |
J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1 (2009) 37-46.
DOI URL |
[86] |
L.-.F. Shen, B.-.A. Lu, X.-.M. Qu, J.-.Y. Ye, J.-.M. Zhang, S.-.H. Yin, Q.-.H. Wu, R.-.X. Wang, S.-.Y. Shen, T. Sheng, Y.-.X. Jiang, S.-.G. Sun, Nano Energy 62 (2019) 601-609.
DOI URL |
[1] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[2] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
[3] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[4] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[5] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[6] | Xin Wang, Jun Wang, Bin Wei, Nan Zhang, Junyuan Xu, Hongwei Miao, Lifeng Liu, Chenliang Su, Ying Li, Zhongchang Wang. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 78(0): 170-175. |
[7] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[8] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[9] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[10] | Zheng Liu, Jieqiong Wang, Changhong Zhan, Jing Yu, Yang Cao, Jinchun Tu, Changsheng Shi. Phosphide-oxide honeycomb-like heterostructure CoP@CoMoO4/CC for enhanced hydrogen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2020, 46(0): 177-184. |
[11] | Seung Man Lim, Kyunglee Kang, Hongje Jang, Jung Tae Park. Environmental friendly synthesis of hierarchical mesoporous platinum nanoparticles templated by fucoidan biopolymer for enhanced hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2020, 46(0): 185-190. |
[12] | Jieqiong Wang, Zheng Liu, Changhong Zhan, Kexi Zhang, Xiaoyong Lai, Jinchun Tu, Yang Cao. 3D hierarchical NiS2/MoS2 nanostructures on CFP with enhanced electrocatalytic activity for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2020, 39(0): 155-160. |
[13] | Yun Eun-Young,Lee Woo-Jae,Min Wang Qi,Kwon Se-Hun. Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition [J]. J. Mater. Sci. Technol., 2017, 33(3): 295-299. |
[14] | Zhonghua Sun, Xiaoyan Song. Effect of Microstructure Scale on Negative Thermal Expansion of Antiperovskite Manganese Nitride [J]. J. Mater. Sci. Technol., 2014, 30(9): 903-909. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||