J. Mater. Sci. Technol. ›› 2022, Vol. 107: 259-265.DOI: 10.1016/j.jmst.2021.07.053
• Research Article • Previous Articles Next Articles
Shuxiang Denga,b, Gang Hea,*(), Zengchao Yanga, Jingxia Wangc, Jiangtao Lia, Lei Jiangc,*(
)
Received:
2021-05-31
Revised:
2021-05-31
Accepted:
2021-05-31
Published:
2022-04-30
Online:
2022-04-28
Contact:
Gang He,Lei Jiang
About author:
lijiangtao@mial.ipc.ac.cn (J. Li).Shuxiang Deng, Gang He, Zengchao Yang, Jingxia Wang, Jiangtao Li, Lei Jiang. Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings[J]. J. Mater. Sci. Technol., 2022, 107: 259-265.
Fig. 1. Comparison of XRD patterns of as-synthesized (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 powders with those of single component Ln2Zr2O7 (Ln-Y, Gd, Er, Yb, Lu) obtained from ICDD/JCPCS cards.
Fig. 2. (a) TEM image of the as-synthesized HE-REZ powder. (b) SAED pattern of single HE-REZ ceramic particle. (c) EDS elemental mapping on the particle.
Fig. 3. (a) XRD pattern and (b) SEM image of the prepared HE-REZ ceramic. The inset in (b) is the SEM image of higher magnification. (c) EDS elemental mapping in the zone of the inset.
Fig. 5. The contact angle between CMAS and HE-REZ pellet versus temperature and four typical morphologies correspond to four characteristic temperatures, respectively.
Fig. 6. (A-F) The cross-sectional images of CMAS-reacted HE-REZ pellets for 0.5, 1, 2, 4, 12, 24 h, respectively. (a-f) The corresponding EDS elemental Si maps.
Fig. 7. Evolution of (a) infiltration depth and (b) infiltration velocity with exposure time in HE-REZ pellet. (c, d) The atom fraction of various elements varying with the position at 0.5 h and 2 h, respectively. (e) The atom fraction of rare earth elements in the pellet at 5 μm from the recession layer at 0.5 h and 2 h, respectively. (f) XRD pattern of the reaction product mixed in equal masses of CMAS powder and HE-REZ powder.
Fig. 8. (A) Morphology of HE-REZ pellet infiltrated by CMAS at 1400 °C for 1 h. (a), (b), (c) and (d) correspond to the microstructure at the point a, b, c and d in (A), respectively.
Element | Mass Fraction (wt.%) | Atom Fraction (wt.%) |
---|---|---|
Si | 24.39 | 52.75 |
Ca | 14.32 | 21.68 |
Y | 15.93 | 6.14 |
Gd | 10.34 | 7.04 |
Er | 13.68 | 4.96 |
Yb | 11.20 | 3.92 |
Lu | 10.14 | 3.51 |
Table 1 The contents of elements at Area I in Fig. 8(A).
Element | Mass Fraction (wt.%) | Atom Fraction (wt.%) |
---|---|---|
Si | 24.39 | 52.75 |
Ca | 14.32 | 21.68 |
Y | 15.93 | 6.14 |
Gd | 10.34 | 7.04 |
Er | 13.68 | 4.96 |
Yb | 11.20 | 3.92 |
Lu | 10.14 | 3.51 |
[1] | C.H. Liebert, R.E. Jacobs, S. Stecura, C.R. Morse, Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation, Cleveland: National Aeronautics and Space Administration, Report No.NASA TM X-3410, 1976. |
[2] |
N.P. Padture, M. Gell, E.H. Jordan, Science, 296 (2002), pp. 280-284.
PMID |
[3] | D.R. Clarke, M. Oechsner, N.P. Padture, Mrs Bull, 37 (2012), pp. 891-902. |
[4] |
R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stoever, Surf. Coat. Technol., 205 (2010), pp. 938-942.
DOI URL |
[5] |
L. Chen, G.J. Yang, J. Adv. Ceram., 7 (2018), pp. 17-29.
DOI URL |
[6] |
B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci. Technol., 35 (2019), pp. 833-851.
DOI |
[7] | M.P. Borom, C.A. Johnson, L.A. Peluso, Surf. Coat. Technol., 86 (1996), pp. 116-126. |
[8] |
R. Darolia, Int. Mater. Rev., 58 (2013), pp. 315-348.
DOI URL |
[9] |
S. Kramer, J. Yang, C.G. Levi, C.A. Johnson, J. Am. Ceram. Soc., 89 (2006), pp. 3167-3175.
DOI URL |
[10] |
C. Mercer, S. Faulhaber, A.G. Evans, R. Darolia, Acta Mater, 53 (2005), pp. 1029-1039.
DOI URL |
[11] |
D. Mueller, U. Kueppers, K.U. Hess, W.J. Song, D.B. Dingwell, J. Volcanol. Geotherm. Res., 377 (2019), pp. 43-52.
DOI URL |
[12] |
R. Naraparaju, J.J.G. Chavez, P. Niemeyer, K.U. Hess, W.J. Song, D.B. Dingwell, S. Lokachari, C.V. Ramana, U. Schulz, J. Eur. Ceram. Soc., 39 (2019), pp. 2936-2945.
DOI URL |
[13] |
W.J. Song, K.U. Hess, D.E Damby, F.B. Wadsworth, Y. Lavallee, C. Cimarelli, D.B. Dingwell, Geophys. Res. Lett., 41 (2014), pp. 2326-2333.
DOI URL |
[14] |
W.J. Song, Y. Lavallee, K.U. Hess, U. Kueppers, C. Cimarelli, D.B. Dingwell, Nat. Commun., 7 (2016), p. 10795.
DOI URL |
[15] |
W.J. Song, Y. Lavallee, F.B. Wadsworth, K.U. Hess, D.B. Dingwell, J. Phys. Chem. Lett., 8 (2017), pp. 1878-1884.
DOI URL |
[16] |
J.M. Drexler, K. Shinoda, A.L. Ortiz, D. Li, A.L. Vasiliev, A.D. Gledhill, S. Sampath, N.P. Padture, Acta Mater, 58 (2010), pp. 6835-6844.
DOI URL |
[17] |
L. Li, N. Hitchman, J. Knapp, J. Therm. Spray Technol., 19 (2010), pp. 148-155.
DOI URL |
[18] |
R.G. Wellman, J.R. Nicholls, Tribol. Int., 41 (2008), pp. 657-662.
DOI URL |
[19] |
A. Aygun, A.L. Vasiliev, N.P. Padture, X. Ma, Acta Mater, 55 (2007), pp. 6734-6745.
DOI URL |
[20] |
S. Kraemer, J. Yang, C.G. Levi, J. Am. Ceram. Soc., 91 (2008), pp. 576-583.
DOI URL |
[21] |
H. Wang, A. Bakal, X. Zhang, E. Tarwater, Z. Sheng, J.W. Fergus, J. Electrochem. Soc., 163 (2016), pp. C643-C648.
DOI URL |
[22] |
D. Wu, H. Zhang, X. Shan, F. Yang, F. Guo, X. Zhao, P. Xiao, S. Gong, J. Am. Ceram. Soc., 103 (2020), pp. 3401-3415.
DOI URL |
[23] |
J.M. Drexler, A.L. Ortiz, N.P. Padture, Acta Mater, 60 (2012), pp. 5437-5447.
DOI URL |
[24] |
F. Li, L. Zhou, J.X. Liu, Y. Liang, G.J. Zhang, J. Adv. Ceram., 8 (2019), pp. 576-582.
DOI URL |
[25] |
L.R. Turcer, A. Sengupta, N.P. Padture, Scr. Mater., 191 (2021), pp. 40-45.
DOI URL |
[26] |
A.J. Wright, Q. Wang, C. Huang, A. Nieto, R. Chen, J. Luo, J. Eur. Ceram. Soc., 40 (2020), pp. 2120-2129.
DOI URL |
[27] |
A.J. Wright, Q. Wang, S.T. Ko, K.M. Chung, R. Chen, J. Luo, Scr. Mater., 181 (2020), pp. 76-81.
DOI URL |
[28] |
Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol., 35 (2019), pp. 2647-2651.
DOI URL |
[29] |
L. Zhou, F. Li, J.X. Liu, Q. Hu, W. Bao, Y. Wu, X. Cao, F. Xu, G.J. Zhang, J. Eur. Ceram. Soc., 40 (2020), pp. 5731-5739.
DOI URL |
[30] |
J. Zhu, X. Meng, P. Zhang, Z. Li, J. Xu, M.J. Reece, F. Gao, J. Eur. Ceram. Soc., 41 (2021), pp. 2861-2869.
DOI URL |
[31] |
A.J. Wright, C. Huang, M.J. Walock, A. Ghoshal, M. Murugan, J. Luo, J. Am. Ceram. Soc., 104 (2021), pp. 448-462.
DOI URL |
[32] |
S. Deng, G. He, L. Wang, Q. Meng, Z. Yang, J. Li, L. Jiang, Ceram. Int., 47 (2021), pp. 5795-5802.
DOI URL |
[33] |
R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stover, J. Am. Ceram. Soc., 83 (2000), pp. 2023-2028.
DOI URL |
[34] |
A.S. Risbud, K.B. Helean, M.C. Wilding, P. Lu, A. Navrotsky, J. Mater. Res., 16 (2001), pp. 2780-2783.
DOI URL |
[1] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[2] | Fengnian Zhang, Fuhao Cheng, Chufei Cheng, Meng Guo, Yufeng Liu, Yang Miao, Feng Gao, Xiaomin Wang. Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides [J]. J. Mater. Sci. Technol., 2022, 105(0): 122-130. |
[3] | Junwei Che, Xiangyang Liu, Xuezhi Wang, Quan Zhang, Erhu Zhang, Gongying Liang, Shengli Zhang. Ultralow oxygen ion diffusivity in pyrochlore-type La2(Zr0.7Ce0.3)2O7 [J]. J. Mater. Sci. Technol., 2022, 102(0): 174-185. |
[4] | Wei Fan, Yu Bai, Yanfen Liu, Taotao Li, Binmao Li, Lei Zhang, Chenmin Gao, Shiyu Shan, Haocen Han. Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 107(0): 149-154. |
[5] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[6] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[7] | Longkang Cong, Wei Li, Jiancheng Wang, Shengyue Gu, Shouyang zhang. High-entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material [J]. J. Mater. Sci. Technol., 2022, 101(0): 199-204. |
[8] | Huaicheng Xiang, Lei Yao, Junqi Chen, Aihong Yang, Haitao Yang, Liang Fang. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies [J]. J. Mater. Sci. Technol., 2021, 93(0): 28-32. |
[9] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[10] | Longkang Cong, Shouyang Zhang, Shengyue Gu, Wei Li. Thermophysical properties of a novel high entropy hafnate ceramic [J]. J. Mater. Sci. Technol., 2021, 85(0): 152-157. |
[11] | Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic [J]. J. Mater. Sci. Technol., 2020, 39(0): 99-105. |
[12] | Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites [J]. J. Mater. Sci. Technol., 2020, 47(0): 45-51. |
[13] | Zifan Zhao, Huimin Xiang, ZhiDai Fu, Zhijian Peng, Yanchun Zhou. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity [J]. J. Mater. Sci. Technol., 2019, 35(10): 2227-2231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||