J. Mater. Sci. Technol. ›› 2022, Vol. 98: 268-271.DOI: 10.1016/j.jmst.2021.04.070
• Research Article • Previous Articles
Kai Lv, Chengwu Shi*(), Yang Yang, Qi Wang, Xun Sun, Wangchao Chen
Received:
2021-01-07
Revised:
2021-03-20
Accepted:
2021-04-24
Published:
2022-01-30
Online:
2022-01-25
Contact:
Chengwu Shi
About author:
*E-mail addresses: shicw506@foxmail.com, shicw506@hfut.edu.cn (C. Shi).Kai Lv, Chengwu Shi, Yang Yang, Qi Wang, Xun Sun, Wangchao Chen. The pyrolysis preparation of the compact and full-coverage AgSbS2 thin films and the photovoltaic performance of the corresponding solar cells[J]. J. Mater. Sci. Technol., 2022, 98: 268-271.
Preparation temperature (°C) | Voc(V) | Jsc(mA cm-2) | FF(%) | PCE(%) | |
---|---|---|---|---|---|
150 | Best | 0.20 | 2.45 | 38.14 | 0.18 |
Average* | 0.19±0.01 | 2.49±0.12 | 36.56±1.89 | 0.17±0.01 | |
350 | Best | 0.23 | 7.00 | 40.28 | 0.65 |
Average* | 0.22±0.02 | 6.85±0.14 | 41.27±0.88 | 0.62±0.04 |
Table 1 The photovoltaic performance parameters of AgSbS2 thin film solar cells at 150 °C and 350 °C.
Preparation temperature (°C) | Voc(V) | Jsc(mA cm-2) | FF(%) | PCE(%) | |
---|---|---|---|---|---|
150 | Best | 0.20 | 2.45 | 38.14 | 0.18 |
Average* | 0.19±0.01 | 2.49±0.12 | 36.56±1.89 | 0.17±0.01 | |
350 | Best | 0.23 | 7.00 | 40.28 | 0.65 |
Average* | 0.22±0.02 | 6.85±0.14 | 41.27±0.88 | 0.62±0.04 |
Preparation temperature (°C) | Rs(Ω) | Rcr(Ω) | Y0(10-6 F sn-1) | n |
---|---|---|---|---|
150 | 75.83 | 7414 | 1.242 | 0.935 |
350 | 73.15 | 10239 | 0.634 | 0.951 |
Table 2 Parameters obtained by fitting the experimental spectra in Nyquist plots of AgSbS2 thin film solar cells using an equivalent circuit Rs (Rcr CPE).
Preparation temperature (°C) | Rs(Ω) | Rcr(Ω) | Y0(10-6 F sn-1) | n |
---|---|---|---|---|
150 | 75.83 | 7414 | 1.242 | 0.935 |
350 | 73.15 | 10239 | 0.634 | 0.951 |
Fig. 3. Surface (a) and cross-sectional (b) SEM images of the compact and full-coverage AgSbS2 thin films and the photocurrent-photovoltage characteristic (c) of the corresponding solar cells.
[1] |
A.M. Ibrahim, J. Phys.: Condens. Matter 7 (1995) 5931-5938.
DOI URL |
[2] |
K. Hoang, S.D. Mahanti, J.R. Salvador, M.G. Kanatzidis, Phys. Rev. Lett. 99 (2007) 156403.
DOI URL |
[3] |
S. Berri, D. Maouche, N. Bouarissa, Y. Medkour, Mater. Sci. Semicond. Process. 16 (2013) 1439-1446.
DOI URL |
[4] |
Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Mater. Horiz 4 (2017) 206-216.
DOI URL |
[5] |
Y. Liu, B. Yang, M. Zhang, B. Xia, C. Chen, X. Liu, J. Zhong, Z. Xiao, J. Tang, Nano Energy 71 (2020) 104574.
DOI URL |
[6] |
Y. Zhang, J. Tian, K. Jiang, J. Huang, F. Li, P. Wang, H. Fan, Y. Song, Mater. Lett. 232 (2018) 82-85.
DOI URL |
[7] |
Y.R. Ho, M.W. Lee, Electrochem. Commun. 26 (2013) 48-51.
DOI URL |
[8] |
W.C. Yang, M.W. Lee. J. Electrochem. Soc. 161 (2014) H92-H96.
DOI URL |
[9] |
J. Capistrán-Martínez, P.K. Nair, Phys. Status Solidi A 212 (2015) 2869-2876.
DOI URL |
[10] |
X. Wang, J. Li, W. Liu, S. Yang, C. Zhu, T. Chen, Nanoscale 9 (2017) 3386-3390.
DOI URL |
[11] | C. Jiang, R. Tang, X. Wang, H. Ju, G. Chen, T. Chen, Sol. RRL 11 (2018) 1800272. |
[12] |
Y. Yang, C. Shi, K. Lv, Q. Wang, F. Guo, W. Chen, Sol. Energy 217 (2021) 25-28.
DOI URL |
[13] |
K. Lv, C. Shi, Y. Yang, H. Fu, F. Guo, Q. Wang, Mater. Lett. 256 (2019) 126636.
DOI URL |
[14] |
C. Ying, F. Guo, Z. Wu, K. Lv, C. Shi, Energy Technol 8 (2020) 1901368.
DOI URL |
[1] | Yazi Wang, Shasha Lv, Zhengcao Li. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells [J]. J. Mater. Sci. Technol., 2022, 96(0): 179-189. |
[2] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[3] | Zhong Huang, Yangfan Zheng, Haijun Zhang, Faliang Li, Yuan Zeng, Quanli Jia, Jun Zhang, Junyi Li, Shaowei Zhang. High-yield production of carbon nanotubes from waste polyethylene and fabrication of graphene-carbon nanotube aerogels with excellent adsorption capacity [J]. J. Mater. Sci. Technol., 2021, 94(0): 90-98. |
[4] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[5] | Jian Han, Xingyu Pu, Hui Zhou, Qi Cao, Shuangjie Wang, Jiabao Yang, Junsong Zhao, Xuanhua Li. Multidentate anchoring through additive engineering for highly efficient Sb2S3 planar thin film solar cells [J]. J. Mater. Sci. Technol., 2021, 89(0): 36-44. |
[6] | Kwonwoo Oh, Kyungeun Jung, Jaehak Shin, Sunglim Ko, Man-Jong Lee. Novel Intense-pulsed-light synthesis of amorphous SnO2 electron-selective layers for efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 92(0): 171-177. |
[7] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[8] | Liquan Yao, Limei Lin, Hui Liu, Fengying Wu, Jianmin Li, Shuiyuan Chen, Zhigao Huang, Guilin Chen. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon [J]. J. Mater. Sci. Technol., 2020, 58(0): 130-137. |
[9] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[10] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[11] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
[12] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[13] | Johwa Yang, Hyunjin Jo, Soo-Won Choi, Dong-Won Kang, Jung-Dae Kwon. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system [J]. J. Mater. Sci. Technol., 2019, 35(8): 1563-1569. |
[14] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[15] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||