J. Mater. Sci. Technol. ›› 2021, Vol. 94: 77-89.DOI: 10.1016/j.jmst.2021.03.062
• Research Article • Previous Articles Next Articles
Tianqi Changa,b, Chunxia Liua, Kunyan Luc, Yong Wua, Mingzhu Xub, Qian Yuc,*(), Zhenya Shena,*(
), Tingbo Jiangb,*(
), Yanxia Zhanga,*(
)
Received:
2020-12-24
Revised:
2021-02-24
Accepted:
2021-03-03
Published:
2021-05-17
Online:
2021-05-17
Contact:
Qian Yu,Zhenya Shen,Tingbo Jiang,Yanxia Zhang
About author:
zhangyanxia@suda.edu.cn (Y.Zhang).Tianqi Chang, Chunxia Liu, Kunyan Lu, Yong Wu, Mingzhu Xu, Qian Yu, Zhenya Shen, Tingbo Jiang, Yanxia Zhang. Biomaterials based cardiac patches for the treatment of myocardial infarction[J]. J. Mater. Sci. Technol., 2021, 94: 77-89.
Material | Delivered cells or bioactive factors | Biological results | Ref. |
---|---|---|---|
Proteins | |||
Collagen | N.A. | Fibrosis↓, myocardial remodeling↓, angiogenesis↑, contractility↑ | [ |
CMs | Vascular density↑, infarction size↓, LV dilation↓, wall thickness↑, heart function↑ | [ | |
MSCs | Angiogenesis↑, wall thickness↑, myocardial remodeling↓, perfusion↑, contractility↑ | [ | |
ADSCs | Fibrosis↓, vascular density↑, LV function↑ | [ | |
VEGF | Vascular density↑, LV function↑ | [ | |
Fibrin | N.A. | Myocardial remodeling↓, heart function↑ | [ |
CMs | Infarction size↓, wall thinning↓, myocardial remodeling↓, heart function↑ | [ | |
hiPSC-cardiac cells (CMs, ECs, SMCs) | Apoptosis↓, vascular density↑, infarction size↓, wall stress↓, cardiac function↑ | [ | |
hESC-vascular cells (ECs, SMCs) | Angiogenesis↑, apoptosis↓, perfusion↑, cardiac function↑ | [ | |
MSCs | Apoptosis↓, infarction size↓, angiogenesis↑, wall thickness↑, cardiac function↑ | [ | |
HUVECs | Cardiomyocyte proliferation↑, neovascularization↑ | [ | |
ATDPCs | Angiogenesis↑, morphology↑, cardiac function↑ | [ | |
IGF-1 | Myocardial metabolism↑, arteriole density↑, infarction size↓, wall stress↓, apoptosis↓, LV function↑ | [ | |
CSCs and ECs | Cardiomyocyte mitosis↑, angiogenesis↑, inflammation↓, apoptosis↓, cardiac function↑ | [ | |
Gelatin | bFGF | microvascular density↑, LV function↑ | [ |
CMs | Myocardial remodeling↓, wall thickness↑, cardiac output↑, blood vessel density↑, fibrosis↓, LV function↑ | [ | |
Polysaccharides | |||
Alginate | CMs | LV dilation↓, HF progression↓, heart function↑ | [ |
hESCs and hEBs | Scar thinning↓, LV dysfunction↓ | [ | |
hMSCs | Infarction size↓, microvascular density↑, EF↑ | [ | |
Chitosan/Calcium silicate | CMs | Infarction size↓, angiogenesis↑, cardiac function↑ | [ |
Hyaluronic acid | ADSCs | EF↑, LV function↑ | [ |
Cellulose | AD-MSCs | Fibrosis↓, myocardial remodeling↓, angiogenesis↑, apoptosis↓ | [ |
Decellularized tissues | |||
N.A. | Wall thickness↑, angiogenesis↑, heart function↑ | [ | |
ASCs | Vascular formation↑ | [ | |
MSCs | Inflammation↓, apoptosis↓, cell proliferation↑, angiogenesis↑, myocardial protection↑, wall thickness↑, heart function↑ | [ | |
Mesenchymal stromal cells | LV dilation↓, heart function↑ | [ | |
CSC-secreted factors | Angiogenesis↑, heart function↑ | [ | |
bFGF | Myocardial remodeling↓, contractility↑ | [ |
Table 1 Summary of natural materials used for cardiac patches.
Material | Delivered cells or bioactive factors | Biological results | Ref. |
---|---|---|---|
Proteins | |||
Collagen | N.A. | Fibrosis↓, myocardial remodeling↓, angiogenesis↑, contractility↑ | [ |
CMs | Vascular density↑, infarction size↓, LV dilation↓, wall thickness↑, heart function↑ | [ | |
MSCs | Angiogenesis↑, wall thickness↑, myocardial remodeling↓, perfusion↑, contractility↑ | [ | |
ADSCs | Fibrosis↓, vascular density↑, LV function↑ | [ | |
VEGF | Vascular density↑, LV function↑ | [ | |
Fibrin | N.A. | Myocardial remodeling↓, heart function↑ | [ |
CMs | Infarction size↓, wall thinning↓, myocardial remodeling↓, heart function↑ | [ | |
hiPSC-cardiac cells (CMs, ECs, SMCs) | Apoptosis↓, vascular density↑, infarction size↓, wall stress↓, cardiac function↑ | [ | |
hESC-vascular cells (ECs, SMCs) | Angiogenesis↑, apoptosis↓, perfusion↑, cardiac function↑ | [ | |
MSCs | Apoptosis↓, infarction size↓, angiogenesis↑, wall thickness↑, cardiac function↑ | [ | |
HUVECs | Cardiomyocyte proliferation↑, neovascularization↑ | [ | |
ATDPCs | Angiogenesis↑, morphology↑, cardiac function↑ | [ | |
IGF-1 | Myocardial metabolism↑, arteriole density↑, infarction size↓, wall stress↓, apoptosis↓, LV function↑ | [ | |
CSCs and ECs | Cardiomyocyte mitosis↑, angiogenesis↑, inflammation↓, apoptosis↓, cardiac function↑ | [ | |
Gelatin | bFGF | microvascular density↑, LV function↑ | [ |
CMs | Myocardial remodeling↓, wall thickness↑, cardiac output↑, blood vessel density↑, fibrosis↓, LV function↑ | [ | |
Polysaccharides | |||
Alginate | CMs | LV dilation↓, HF progression↓, heart function↑ | [ |
hESCs and hEBs | Scar thinning↓, LV dysfunction↓ | [ | |
hMSCs | Infarction size↓, microvascular density↑, EF↑ | [ | |
Chitosan/Calcium silicate | CMs | Infarction size↓, angiogenesis↑, cardiac function↑ | [ |
Hyaluronic acid | ADSCs | EF↑, LV function↑ | [ |
Cellulose | AD-MSCs | Fibrosis↓, myocardial remodeling↓, angiogenesis↑, apoptosis↓ | [ |
Decellularized tissues | |||
N.A. | Wall thickness↑, angiogenesis↑, heart function↑ | [ | |
ASCs | Vascular formation↑ | [ | |
MSCs | Inflammation↓, apoptosis↓, cell proliferation↑, angiogenesis↑, myocardial protection↑, wall thickness↑, heart function↑ | [ | |
Mesenchymal stromal cells | LV dilation↓, heart function↑ | [ | |
CSC-secreted factors | Angiogenesis↑, heart function↑ | [ | |
bFGF | Myocardial remodeling↓, contractility↑ | [ |
Fig. 1. (A) Schematic illustration of preparation of a dense collagen patch via plastic compression technique. (B) A heart after MI induced via permanent ligation of left anterior descending (LAD) artery, which is either untreated or treated with the dense collagen patch. The fibrillar structure of the patch was shown in the scanning electron microscopy image. Reproduced with permission from Ref. [25]. Copyright 2013 Elsevier B. V.
Fig. 2. Schematic illustration of fibrin formation. Reproduced with permission from Ref. [86]. Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 3. Schematic illustration of cross-linking between alginate chains induced by calcium ions as well as covalent bonds between alginate chains and carboxy-functionalized carbon nanotubes (CNTs). Adapted based on Ref. [104].
Fig. 4. Schematic illustration of an alginate/gelatin patch functionalized with IGF-1 via avidin-biotin binding strategy. Adapted based on Ref. [105].
Fig. 5. Process of preparation of a decellularized cardiac tissue. The left ventricle was separated, cut into small pieces, then decellularized and lyophilized. Scale bars = 3 cm. Reproduced with permission from Ref. [113]. Copyright 2020 Wiley-Blackwell.
Fig. 7. Schematic illustration of preparation of a decellularized matrix-based patch and its effects on infarcted myocardium. Reproduced with permission from Ref. [66]. Copyright 2019 American Chemical Society.
Fig. 8. Schematic illustration of the fabrication of an acellular artificial cardiac patch by embedding polymeric microparticles with CSC-secreted factors in decellularized myocardial ECM. Adapted based on Ref. [74].
Material | Delivered cells or bioactive factors | Biological results | Ref. |
---|---|---|---|
PU | Methylprednisolone | Infarction size↓, revascularization↑, EF↑, cardiac function↑ | [ |
PEUU | N.A. | Angiogenesis↑, myocardial remodeling↓, cardiac function↑ | [ |
PGS | Myocytes and/or myoblasts | Cardiac function↑ | [ |
PCL | ATDPCs | Infarction size↓, fibrosis↓, angiogenesis↑ | [ |
SKMCs | Wall thickness↑, blood vessel density↑ | [ | |
PLCL and PEOz | VEGF and bFGF | Apoptosis↓, angiogenesis↑, heart function↑ | [ |
PLLA | GCSF | Inflammation↓, angiogenesis↑, LV dilation↓, heart function↑ | [ |
PGA | ESCs | Blood pressure↑, LV function↑ | [ |
PCLA | SMCs | LV dilation↓, heart function↑ | [ |
PLGA | MSCs | LV remodeling↓, cardiac function↑ | [ |
PAN | CMs and ECs | Providing mechanical support, functional aggravation↓, cardiac function↑ | [ |
Poly(glycolide:lactide) | Fibroblasts | EF↑, cardiac function↑ | [ |
PPy | N.A. | Conductivity↑, revascularization↑, cardiac function↑ | [ |
Table 2 Summary of synthetic materials used for cardiac patches.
Material | Delivered cells or bioactive factors | Biological results | Ref. |
---|---|---|---|
PU | Methylprednisolone | Infarction size↓, revascularization↑, EF↑, cardiac function↑ | [ |
PEUU | N.A. | Angiogenesis↑, myocardial remodeling↓, cardiac function↑ | [ |
PGS | Myocytes and/or myoblasts | Cardiac function↑ | [ |
PCL | ATDPCs | Infarction size↓, fibrosis↓, angiogenesis↑ | [ |
SKMCs | Wall thickness↑, blood vessel density↑ | [ | |
PLCL and PEOz | VEGF and bFGF | Apoptosis↓, angiogenesis↑, heart function↑ | [ |
PLLA | GCSF | Inflammation↓, angiogenesis↑, LV dilation↓, heart function↑ | [ |
PGA | ESCs | Blood pressure↑, LV function↑ | [ |
PCLA | SMCs | LV dilation↓, heart function↑ | [ |
PLGA | MSCs | LV remodeling↓, cardiac function↑ | [ |
PAN | CMs and ECs | Providing mechanical support, functional aggravation↓, cardiac function↑ | [ |
Poly(glycolide:lactide) | Fibroblasts | EF↑, cardiac function↑ | [ |
PPy | N.A. | Conductivity↑, revascularization↑, cardiac function↑ | [ |
Fig. 10. (A) Synthesis of a ROS responsive polyurethane (PUTK) with a thioketal linker. (B) Degradation of PUTK in response to ROS due to the cleavage of thioketal linkers. (C) Schematic illustration of preparation of a fibrous PUTK patch loaded with methylprednisolone for responsive release. (D) Transplantation of the resulted patch on the infarcted heart surface to restore the cardiac function after MI. Reproduced with permission from Ref. [121]. Copyright 2019 Elsevier B.V.
Fig. 11. Schematic illustration of the perfusion seeding of channeled elastomer scaffolds. Reproduced with permission from Ref. [127]. Copyright 2010 American Institute of Chemical Engineers Biotechnol. Prog.
Fig. 12. Schematic illustration of preparation of a cardiac patch composed of gelatin and conductive polymer and the mechanism of its effects on repairing the infarcted myocardium. Reproduced with permission from Ref. [151]. Copyright 2020 Elsevier B.V.
[1] | K. Thygesen, J.S. Alpert, A.S. Jaffe, B.R. Chaitman, J.J. Bax, D.A. Morrow, H.D. White, Circulation 138 (2018) e618-e651. |
[2] | E.J. Benjamin, P. Muntner, A. Alonso, M.S. Bittencourt, C.W. Callaway, A.P. Car-son, A.M. Chamberlain, A.R. Chang, S. Cheng, S.R. Das, F.N. Delling, L. Djousse, M.S.V. Elkind, J.F. Ferguson, M. Fornage, L.C. Jordan, S.S. Khan, B.M. Kissela, K.L. Knutson, T.W. Kwan, D.T. Lackland, T.T. Lewis, J.H. Lichtman, C.T. Lon-genecker, M.S. Loop, P.L. Lutsey, S.S. Martin, K. Matsushita, A.E. Moran, M.E. Mussolino, M. O’Flaherty, A. Pandey, A.M. Perak, W.D. Rosamond, G.A. Roth, U.K.A. Sampson, G.M. Satou, E.B. Schroeder, S.H. Shah, N.L. Spar-tano, A. Stokes, D.L. Tirschwell, C.W. Tsao, M.P. Turakhia, L.B. VanWagner, J.T. Wilkins, S.S. Wong, S.S. Virani, Circulation 139 (2019) e56-e528. |
[3] | World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals, WHO, Geneva, 2020. |
[4] | L. Schirone, M. Forte, S. Palmerio, D. Yee, C. Nocella, F. Angelini, F. Pagano, S. Schiavon, A. Bordin, A. Carrizzo, C. Vecchione, V. Valenti, I. Chimenti, E. De Falco, S. Sciarretta, G. Frati, Oxid. Med. Cell. Longevity 2017 (2017) 3920195. |
[5] |
L.Y. Ma, W.W. Chen, R.L. Gao, L.S. Liu, M.L. Zhu, Y.J. Wang, Z.S. Wu, H.J. Li, D.F. Gu, Y.J. Yang, Z. Zheng, S.S. Hu, J. Geriatr. Cardiol. 17 (2020) 1-8.
DOI PMID |
[6] |
J.G. Cleland, M. Tendera, J. Adamus, N. Freemantle, L. Polonski, J. Taylor, Eur. Heart J. 27 (2006) 2338-2345.
PMID |
[7] |
S. Yusuf, M.A. Pfeffer, K. Swedberg, C.B. Granger, P. Held, J.J. McMurray, E.L. Michelson, B. Olofsson, J. Ostergren, Lancet 362 (2003) 777-781.
DOI URL |
[8] |
D.J. van Veldhuisen, A. Cohen-Solal, M. Böhm, S.D. Anker, D. Babalis, M. Roughton, A.J. Coats, P.A. Poole-Wilson, M.D. Flather, J. Am. Coll. Cardiol. 53 (2009) 2150-2158.
DOI PMID |
[9] |
B. Pitt, M.A. Pfeffer, S.F. Assmann, R. Boineau, I.S. Anand, B. Claggett, N. Clausell, A.S. Desai, R. Diaz, J.L. Fleg, I. Gordeev, B. Harty, J.F. Heitner, C.T. Kenwood, E.F. Lewis, E. O’Meara, J.L. Probstfield, T. Shaburishvili, S.J. Shah, S.D. Solomon, N.K. Sweitzer, S. Yang, S.M. McKinlay, N.Engl. J. Med. 370 (2014) 1383-1392.
DOI URL |
[10] |
G.S. Francis, J.A. Bartos, S. Adatya, J. Am. Coll. Cardiol. 63 (2014) 2069-2078.
DOI PMID |
[11] |
H. Jawad, N.N. Ali, A.R. Lyon, Q.Z. Chen, S.E. Harding, A.R. Boccaccini, J. Tissue Eng. Regener. Med. 1 (2007) 327-342.
DOI URL |
[12] | S.M. Parizadeh, R. Jafarzadeh-Esfehani, M. Ghandehari, M.R. Parizadeh, G.A. Ferns, A. Avan, S.M. Hassanian, J. Cell. Physiol. 234 (2019) 16904-16912. |
[13] |
E. Carvalho, P. Verma, K. Hourigan, R. Banerjee, Regener. Med. 10 (2015) 1025-1043.
DOI URL |
[14] | Y. Wu, T. Chang, W. Chen, X. Wang, J. Li, Y. Chen, Y. Yu, Z. Shen, Q. Yu, Y. Zhang, Bioact. Mater. 6 (2021) 520-528. |
[15] |
J. Feng, Y. Wu, W. Chen, J. Li, X. Wang, Y. Chen, Y. Yu, Z. Shen, Y. Zhang, J. Mater. Chem. B 8 (2020) 308-315.
DOI URL |
[16] | S. Liang, Y. Zhang, H. Wang, Z. Xu, J. Chen, R. Bao, B. Tan, Y. Cui, G. Fan, W. Wang, W. Wang, W. Liu, Adv. Mater. 30 (2018) 1704235. |
[17] | J. Tang, A. Vandergriff, Z. Wang, M.T. Hensley, J. Cores, T.A. Allen, P.U. Dinh, J. Zhang, T.G. Caranasos, K. Cheng, Tissue Eng., Part C 23 (2017) 146-155. |
[18] |
J. Zhang, Curr. Treat. Options Cardio. Med. 17 (8) (2015) 37.
DOI URL |
[19] |
L.A. Reis, L.L. Chiu, N. Feric, L. Fu, M. Radisic, J. Tissue Eng. Regener. Med. 10 (2016) 11-28.
DOI URL |
[20] | W.H. Zimmermann, I. Melnychenko, G. Wasmeier, M. Didie, H. Naito, U. Nix-dorff, A. Hess, L. Budinsky, K. Brune, B. Michaelis, S. Dhein, A. Schwoerer, H. Ehmke, T. Eschenhagen, Nat. Med. 12 (2006) 452-458. |
[21] |
Q.Z. Chen, A. Bismarck, U. Hansen, S. Junaid, M.Q. Tran, S.E. Harding, N.N. Ali, A.R. Boccaccini, Biomaterials 29 (2008) 47-57.
DOI URL |
[22] |
J. Leor, S. Cohen, Ann. N. Y., Acad. Sci. 1015 (2004) 312-319.
DOI URL |
[23] |
H.S. O’Neill, J. O’Sullivan, N. Porteous, E. Ruiz-Hernandez, H.M. Kelly, F.J. O’Brien, G.P. Duffy, J. Tissue Eng. Regener. Med. 12 (2018) e384-e394.
DOI URL |
[24] |
J. Leor, N. Landa, S. Cohen, Expert Rev. Cardiovasc. Ther. 4 (2006) 239-252.
DOI URL |
[25] |
V. Serpooshan, M. Zhao, S.A. Metzler, K. Wei, P.B. Shah, A. Wang, M. Mah-moudi, A.V. Malkovskiy, J. Rajadas, M.J. Butte, D. Bernstein, P. Ruiz-Lozano, Biomaterials 34 (2013) 9048-9055.
DOI PMID |
[26] |
C. Zhang, J. Hou, S. Zheng, Z. Zheng, S. Hu, Ann. Thorac. Surg. 92 (2011) 1435-1442.
DOI URL |
[27] |
Y. Wang, W. Huang, J. Liang, Z. Wen, D. Chang, K. Kang, J. Wang, M. Xu, R.W. Millard, Y. Wang, Antioxid. Redox Signaling 21 (2014) 2177-2191.
DOI URL |
[28] |
S.A. Taheri, J. Yeh, R.E. Batt, Y. Fang, H. Ashraf, R. Heffner, B. Nemes, J. Naughton, Int. J. Artif. Organs 31 (2008) 62-67.
PMID |
[29] |
L. Barandon, T. Couffinhal, P. Dufourcq, P. Alzieu, D. Daret, C. Deville, C. Du-plàa, Ann.Thorac. Surg. 78 (2004) 1409-1417.
DOI URL |
[30] |
N. Derval, L. Barandon, P. Dufourcq, L. Leroux, J.M. Lamazière, D. Daret, T. Couffinhal, C. Duplàa, Eur. J. Cardiothorac. Surg. 34 (2008) 248-254.
DOI URL |
[31] | K. Hosoyama, M. Ahumada, C.D. McTiernan, D.R. Davis, F. Variola, M. Ruel, W. Liang, E.J. Suuronen, E.I. Alarcon, ACS Appl. Mater. Interfaces 10 (2018) 4 4668-4 4677. |
[32] |
P. Maureira, P.Y. Marie, F. Yu, S. Poussier, Y. Liu, F. Groubatch, A. Falanga, N. Tran, J. Biomed. Sci. 19 (2012) 93.
DOI PMID |
[33] |
D. Simpson, H. Liu, T.H. Fan, R. Nerem, S.C. Dudley Jr., Stem Cells 25 (2007) 2350-2357.
PMID |
[34] | D.L. Simpson, N.L. Boyd, S. Kaushal, S.L. Stice, S.C. Dudley Jr., Biotechnol.Bio-eng. 109 (2012) 274-283. |
[35] | D.L. Simpson, S.C. Dudley Jr., J.Tissue Eng. Regener. Med. 7 (2013) 192-202. |
[36] | H. Hamdi, V. Planat-Benard, A. Bel, H. Neamatalla, L. Saccenti, D. Calderon, V. Bellamy, M. Bon, M.C. Perrier, C. Mandet, P. Bruneval, L. Casteilla, A.A. Hagège, M. Pucéat, O. Agbulut, P. Menasché, Cell Transplant. 23 (2014) 87-96. |
[37] | J. Gao, J. Liu, Y. Gao, C. Wang, Y. Zhao, B. Chen, Z. Xiao, Q. Miao, J. Dai, Tissue Eng., Part A 17 (2011) 2739-2747. |
[38] | J.S. Wendel, L. Ye, P. Zhang, R.T. Tranquillo, J.J. Zhang, Tissue Eng., Part A 20 (2014) 1325-1335. |
[39] |
L. Gao, Z.R. Gregorich, W. Zhu, S. Mattapally, Y. Oduk, X. Lou, R. Kannappan, A.V. Borovjagin, G.P. Walcott, A.E. Pollard, V.G. Fast, X. Hu, S.G. Lloyd, Y. Ge, J. Zhang, Circulation 137 (2018) 1712-1730.
DOI URL |
[40] | J.S. Wendel, L. Ye, R. Tao, J. Zhang, J. Zhang, T.J. Kamp, R.T. Tranquillo, Stem Cells Transl.Med. 4 (2015) 1324-1332. |
[41] |
C. Fan, Y. Tang, M. Zhao, X. Lou, D. Pretorius, P. Menasche, W. Zhu, J. Zhang, J. Mol. Cell. Cardiol. 141 (2020) 1-10.
DOI URL |
[42] | L. Gao, W. Cui, P. Zhang, A. Jang, W. Zhu, J. Zhang, PLoS ONE 11 (2016) e0162149. |
[43] |
Q. Xiong, L. Ye, P. Zhang, M. Lepley, J. Tian, J. Li, L. Zhang, C. Swingen, J.T. Vaughan, D.S. Kaufman, J. Zhang, Circulation 127 (2013) 997-1008.
DOI URL |
[44] |
Q. Xiong, L. Ye, P. Zhang, M. Lepley, C. Swingen, L. Zhang, D.S. Kaufman, J. Zhang, Circ. Res. 111 (2012) 455-468.
DOI URL |
[45] |
Q. Xiong, K.L. Hill, Q. Li, P. Suntharalingam, A. Mansoor, X. Wang, M.N. Jameel, P. Zhang, C. Swingen, D.S. Kaufman, J. Zhang, Stem Cells 29 (2011) 367-375.
DOI URL |
[46] | S. Roura, C. Soler-Botija, J.R. Bago, A. Llucia-Valldeperas, M.A. Fernandez, C. Galvez-Monton, C. Prat-Vidal, I. Perea-Gil, J. Blanco, A. Bayes-Genis, Stem Cells Transl.Med. 4 (2015) 956-966. |
[47] |
E. Blondiaux, L. Pidial, G. Autret, G. Rahmi, D. Balvay, E. Audureau, C. Wilhelm, C.L. Guerin, P. Bruneval, J.S. Silvestre, P. Menasche, O. Clement, J. Tissue Eng. Regener. Med. 11 (2017) 3417-3427.
DOI URL |
[48] | S. Roura, J.R. Bagó, C. Soler-Botija, J.M. Pujal, C. Gálvez-Montón, C. Prat-Vidal, A. Llucià-Valldeperas, J. Blanco, A. Bayes-Genis, PLoS ONE 7 (2012) e49447. |
[49] | J. Liu, Q. Hu, Z. Wang, C. Xu, X. Wang, G. Gong, A. Mansoor, J. Lee, M. Hou, L. Zeng, J.R. Zhang, M. Jerosch-Herold, T. Guo, R.J. Bache, J. Zhang, Am. J. Phys-iol.: Heart Circ. Physiol. 287 (2004) H501-H511. |
[50] |
J. Li, K. Zhu, S. Yang, Y. Wang, C. Guo, K. Yin, C. Wang, H. Lai, Exp. Biol. Med. 240 (2015) 585-592.
DOI URL |
[51] | A.F. Godier-Furnémont, Y. Tekabe, M. Kollaros, G. Eng, A. Morales, G. Vun-jak-Novakovic, L.L.Johnson,J.Nucl.Med. 54 (2013)977-983. |
[52] |
K. Kobayashi, Y. Ichihara, N. Sato, N. Umeda, L. Fields, M. Fukumitsu, Y. Tago, T. Ito, S. Kainuma, M. Podaru, F. Lewis-McDougall, K. Yamahara, R. Uppal, K. Suzuki, Biomaterials 209 (2019) 41-53.
DOI PMID |
[53] | T. Su, K. Huang, M.A. Daniele, M.T. Hensley, A.T. Young, J. Tang, T.A. Allen, A.C. Vandergriff, P.D. Erb, F.S. Ligler, K. Cheng, ACS Appl. Mater. Interfaces 10 (2018) 33088-33096. |
[54] |
J.R. Bagó, C. Soler-Botija, L. Casaní, E. Aguilar, M. Alieva, N. Rubio, A. Bayes-Genis, J. Blanco, Int. J. Cardiol. 169 (2013) 288-295.
DOI URL |
[55] |
L. Ye, Y.H. Chang, Q. Xiong, P. Zhang, L. Zhang, P. Somasundaram, M. Lep-ley, C. Swingen, L. Su, J.S. Wendel, J. Guo, A. Jang, D. Rosenbush, L. Greder, J.R. Dutton, J. Zhang, T.J. Kamp, D.S. Kaufman, Y. Ge, J. Zhang, Cell Stem Cell 15 (2014) 750-761.
DOI URL |
[56] |
T. Su, K. Huang, K.G. Mathews, V.F. Scharf, S. Hu, Z. Li, B.N. Frame, J. Cores, P.U. Dinh, M.A. Daniele, F.S. Ligler, K. Cheng, ACS Biomater. Sci. Eng. 6 (2020) 6309-6320.
DOI URL |
[57] |
M. Kumagai, K. Minakata, H. Masumoto, M. Yamamoto, A. Yonezawa, T. Ikeda, K. Uehara, K. Yamazaki, T. Ikeda, K. Matsubara, M. Yokode, A. Shimizu, Y. Tabata, R. Sakata, K. Minatoya, Heart Vessels 33 (2018) 1251-1257.
DOI URL |
[58] |
E.C. Martinez, J. Wang, S. Lilyanna, L.H. Ling, S.U. Gan, R. Singh, C.N. Lee, T. Kofidis, J. Tissue Eng. Regener. Med. 7 (2013) 203-212.
DOI URL |
[59] |
J. Leor, S. Aboulafia-Etzion, A. Dar, L. Shapiro, I.M. Barbash, A. Battler, Y. Gra-not, S. Cohen, Circulation 102 (2000) 56-61.
PMID |
[60] | T. Dvir, A. Kedem, E. Ruvinov, O. Levy, I. Freeman, N. Landa, R. Holbova, M.S. Feinberg, S. Dror, Y. Etzion, J. Leor, S. Cohen, Proc. Natl. Acad. Sci. USA 106 (2009) 14990-14995. |
[61] |
J. Leor, S. Gerecht, S. Cohen, L. Miller, R. Holbova, A. Ziskind, M. Shachar, M.S. Feinberg, E. Guetta, J. Itskovitz-Eldor, Heart 93 (2007) 1278-1284.
DOI URL |
[62] | R.D. Levit, N. Landázuri, E.A. Phelps, M.E. Brown, A.J. García, M.E. Davis, G. Joseph, R. Long, S.A. Safley, J.D. Suever, A.N. Lyle, C.J. Weber, W.R. Taylor, J. Am. Heart Assoc. 2 (2013) e000367. |
[63] |
X. Wang, L. Wang, Q. Wu, F. Bao, H. Yang, X. Qiu, J. Chang, ACS Appl. Mater. Interfaces 11 (2019) 1449-1468.
DOI URL |
[64] | E.B. Dolan, B. Hofmann, M.H. de Vaal, G. Bellavia, S. Straino, L. Kovarova, M. Pravda, V. Velebny, D. Daro, N. Braun, D.S. Monahan, R.E. Levey, H. O’Neill, S. Hinderer, R. Greensmith, M.G. Monaghan, K. Schenke-Layland, P. Dockery, B.P. Murphy, H.M. Kelly, S. Wildhirt, G.P. Duffy, Mater. Sci. Eng. C 103 (2019) 109751. |
[65] |
J. Chen, Y. Zhan, Y. Wang, D. Han, B. Tao, Z. Luo, S. Ma, Q. Wang, X. Li, L. Fan, C. Li, H. Deng, F. Cao, Acta Biomater 80 (2018) 154-168.
DOI URL |
[66] | M. Shah, P. KC, G. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 23893-23900. |
[67] |
P.V. Kochupura, E.U. Azeloglu, D.J. Kelly, S.V. Doronin, S.F. Badylak, I.B. Krukenkamp, I.S. Cohen, G.R. Gaudette, Circulation 112 (2005) 144-149.
PMID |
[68] | M. Shah, P. KC, K.M. Copeland, J. Liao, G. Zhang, Sci. Rep. 8 (2018) 16206. |
[69] |
A.F.G. Godier-Furnemont, T.P. Martens, M.S. Koeckert, L. Wan, J. Parks, K. Arai, G. Zhang, B. Hudson, S. Homma, G. Vunjak-Novakovic, Proc. Natl. Acad. Sci. USA 108 (2011) 7974-7979.
DOI URL |
[70] | N. Li, R. Huang, X. Zhang, Y. Xin, J. Li, Y. Huang, W. Cui, J.F. Stoltz, Y. Zhou, Q. Kong, Bio-Med. Mater. Eng. 28 (2017) S87-S94. |
[71] |
R. Khorramirouz, S.M. Kameli, K. Fendereski, S.S. Daryabari, A.M. Kajbafzadeh, Regener. Med. 14 (2019) 113-126.
DOI URL |
[72] |
S.M. Kameli, R. Khorramirouz, S. Eftekharzadeh, K. Fendereski, S.S. Daryabari, S.M. Tavangar, A.M. Kajbafzadeh, J. Biomed. Mater. Res., Part A 106 (2018) 2670-2678.
DOI URL |
[73] |
C.H. Chen, H.J. Wei, W.W. Lin, I. Chiu, S.M. Hwang, C.C. Wang, W.Y. Lee, Y. Chang, H.W. Sung, Cardiovasc. Res. 80 (2008) 88-95.
DOI URL |
[74] | K. Huang, E.W. Ozpinar, T. Su, J. Tang, D. Shen, L. Qiao, S. Hu, Z. Li, H. Liang, K. Mathews, V. Scharf, D.O. Freytes, K. Cheng, Sci. Transl. Med. 12 (2020) eaat9683. |
[75] |
H.E. Mewhort, J.D. Turnbull, H.C. Meijndert, J.M. Ngu, P.W. Fedak, J. Thorac. Cardiovasc. Surg. 147 (2014) 1650-1659.
DOI PMID |
[76] | S. Thon, F.H. Savoie 3rd, Arthroscopy 35 (2019) 1014-1015. |
[77] | H. Hong, J. Kim, H. Cho, S.M. Park, M. Jeon, H.K. Kim, D.S. Kim, Biofabrication 12 (2020) 045030. |
[78] |
J.R. Venugopal, M.P. Prabhakaran, S. Mukherjee, R. Ravichandran, K. Dan, S. Ramakrishna, J.R. Soc., Interface 9 (2012) 1-19.
DOI URL |
[79] | B.T. Freeman, N.A. Kouris, B.M. Ogle, Stem Cells Transl.Med. 4 (2015) 685-694. |
[80] | W.H. Zimmermann, M. Didié, G.H. Wasmeier, U. Nixdorff, A. Hess, I. Melny-chenko, O. Boy, W.L. Neuhuber, M. Weyand, T. Eschenhagen, Circulation 106 (2002) 151-157. |
[81] | P.C. Sherrell, A. Cieslar-Pobuda, M.S. Ejneby, L. Sammalisto, A. Gelmi, E. de Muinck, J. Brask, M.J. Los, M. Rafat, Macromol. Biosci. 17 (2017) 1600466. |
[82] |
S. Fukuhara, S. Tomita, T. Nakatani, T. Fujisato, Y. Ohtsu, M. Ishida, C. Yutani, S. Kitamura, Circ. J. 69 (2005) 850-857.
PMID |
[83] | S. Pok, I.V. Stupin, C. Tsao, R.G. Pautler, Y. Gao, R.M. Nieto, Z.W. Tao, C.D. Fraser Jr., A.V. Annapragada, J.G. Jacot, Adv. Healthcare Mater. 6 (2017) 1600549. |
[84] |
M. Shin, O. Ishii, T. Sueda, J.P. Vacanti, Biomaterials 25 (2004) 3717-3723.
PMID |
[85] | J.J. Stankus, J. Guan, W.R. Wagner, J. Biomed. Mater. Res., Part A 70 (2004) 603-614. |
[86] | I.V. Roberts, D. Bukhary, C.Y.L. Valdivieso, N. Tirelli, Macromol. Biosci. 20 (2020) 1900283. |
[87] |
S. Roura, C. Galvez-Monton, A. Bayes-Genis, J. Tissue Eng. Regener. Med. 11 (2017) 2304-2313.
DOI URL |
[88] | P. Agger, J. Langhoff, M.H. Smerup, J.M. Hasenkam, J. Trauma 68 (2010) 838-842. |
[89] | D. Zhang, I.Y. Shadrin, J. Lam, H.Q. Xian, H.R. Snodgrass, N. Bursac, Biomateri-als 34 (2013) 5813-5820. |
[90] | Y. Jiang, X.L. Lian, Bioact. Mater. 5 (2020) 74-81. |
[91] |
B. Liau, N. Christoforou, K.W. Leong, N. Bursac, Biomaterials 32 (2011) 9180-9187.
DOI URL |
[92] | Z.W. Tao, M. Mohamed, M. Hogan, L. Gutierrez, R.K. Birla, J. Tissue Eng. Re-gener. Med. 11 (2017) 153-163. |
[93] |
P. Menasche, V. Vanneaux, A. Hagege, A. Bel, B. Cholley, I. Cacciapuoti, A. Parouchev, N. Benhamouda, G. Tachdjian, L. Tosca, J.H. Trouvin, J.R. Fab-reguettes, V. Bellamy, R. Guillemain, C.S. Boissel, E. Tartour, M. Desnos, J. Larghero, Eur. Heart J. 36 (2015) 2011-2017.
DOI URL |
[94] |
P. Menasche, V. Vanneaux, A. Hagege, A. Bel, B. Cholley, A. Parouchev, I. Cacciapuoti, R. Al-Daccak, N. Benhamouda, H. Blons, O. Agbulut, L. Tosca, J.H. Trouvin, J.R. Fabreguettes, V. Bellamy, D. Charron, E. Tartour, G. Tachdjian, M. Desnos, J. Larghero, J. Am. Coll. Cardiol. 71 (2018) 429-438.
DOI URL |
[95] |
E. Ruvinov, S. Cohen, Adv. Drug Delivery Rev. 96 (2016) 54-76.
DOI URL |
[96] |
L. Saludas, S. Pascual-Gil, F. Prósper, E. Garbayo, M. Blanco-Prieto, Int. J. Pharm. 523 (2017) 454-475.
DOI URL |
[97] |
J. Sun, H. Tan, Materials (Basel) 6 (2013) 1285-1309.
DOI URL |
[98] |
G. Janarthanan, I. Noh, J. Mater. Sci. Technol. 63 (2021) 35-53.
DOI |
[99] |
J. Rodness, A. Mihic, Y. Miyagi, J. Wu, R.D. Weisel, R.K. Li, Acta Biomater 45 (2016) 169-181.
DOI URL |
[100] | B. Pena, M. Laughter, S. Jett, T.J. Rowland, M.R.G. Taylor, L. Mestroni, D. Park, Macromol. Biosci. 18 (2018) 180 0 079. |
[101] |
G. Amir, L. Miller, M. Shachar, M.S. Feinberg, R. Holbova, S. Cohen, J. Leor, Cell Transplant 18 (2009) 275-282.
DOI URL |
[102] |
D. He, H. Li, J. Mater. Sci. Technol. 63 (2021) 62-72.
DOI URL |
[103] | Y. Sapir, E. Ruvinov, B. Polyak, S. Cohen, Methods Mol. Biol. 1181 (2014) 83-95. |
[104] | M. Izadifar, D. Chapman, P. Babyn, X. Chen, M.E. Kelly, Tissue Eng., Part C 24 (2018) 74-88. |
[105] |
C. Frati, G. Graiani, N. Barbani, D. Madeddu, A. Falco, F. Quaini, L. Lazzeri, M.G. Cascone, E. Rosellini, J. Biomater. Appl. 34 (2020) 975-987.
DOI URL |
[106] | D. Bejleri, M.E. Davis, Adv. Healthcare Mater. 8 (2019) 1801217. |
[107] |
P.L. Sánchez, M.E. Fernández-Santos, S. Costanza, A.M. Climent, I. Moscoso, M.A. Gonzalez-Nicolas, R. Sanz-Ruiz, H. Rodríguez, S.M. Kren, G. Garrido, J.L. Escalante, J. Bermejo, J. Elizaga, J. Menarguez, R. Yotti, C. Pérez del Villar, M.A. Espinosa, M.S. Guillem, J.T. Willerson, A. Bernad, R. Matesanz, D.A. Tay-lor, F. Fernández-Avilés, Biomaterials 61 (2015) 279-289.
DOI PMID |
[108] |
P. KC, Y. Hong, G. Zhang, Regener. Biomater. 6 (2019) 185-199.
DOI URL |
[109] |
J.H. Traverse, T.D. Henry, N. Dib, A.N. Patel, C. Pepine, G.L. Schaer, J.A. De-Quach, A.M. Kinsey, P. Chamberlin, K.L. Christman, JACC Basic Transl. Sci. 4 (2019) 659-669.
DOI PMID |
[110] | C.M.G. Ramos, J.C. Francisco, M. Olandoski, K.A. Carvalho, R. Cunha, B.O. Er-bano, L.F. Jorge, C.P. Baena, V.F. Amaral, L. Noronha, R.M. Macedo, J.R. Fari-a-Neto, L.C. Guarita-Souza, Rev. Bras. Cir. Cardiovasc. 29 (2014) 202-213. |
[111] |
K.A. Robinson, J. Li, M. Mathison, A. Redkar, J. Cui, N.A. Chronos, R.G. Matheny, S.F. Badylak, Circulation 112 (2005) 135-143.
PMID |
[112] |
T. Ota, T.W. Gilbert, D. Schwartzman, C.F. McTiernan, T. Kitajima, Y. Ito, Y. Sawa, S.F. Badylak, M.A. Zenati, J. Thorac. Cardiovasc. Surg. 136 (2008) 1309-1317.
DOI URL |
[113] | J. Hu, I. Altun, Z. Zhang, H. Albadawi, M.A. Salomao, J.L. Mayer, L. Hemachan-dra, S.Rehman, R. Oklu, Adv. Mater. 32 (2020) 2002611. |
[114] |
K. Cheng, K. Malliaras, D. Shen, E. Tseliou, V. Ionta, J. Smith, G. Galang, B. Sun, C. Houde, E. Marbán, J. Am. Coll. Cardiol. 59 (2012) 256-264.
DOI PMID |
[115] | B.W. Streeter, M.E. Davis, Adv. Exp. Med. Biol. 5 (2019) 1-24. |
[116] |
B. Yanagawa, V. Rao, T.M. Yau, R.J. Cusimano, Innovations 8 (2013) 348-352.
DOI PMID |
[117] | T. Holubec, E. Caliskan, D. Bettex, F. Maisano, Eur. J. Cardio-Thorac.Surg. 48 (2015) 800-803. |
[118] |
A.A. Rane, K.L. Christman, J. Am. Coll. Cardiol. 58 (2011) 2615-2629.
DOI URL |
[119] | Z. Wang, Q. Hu, Z. Zeng, X.Z. Wang, Y.Q. Guan, Y. Zhang, Colloid Interface Sci. Commun. 39 (2020) 100326. |
[120] |
S.T. Wall, J.C. Walker, K.E. Healy, M.B. Ratcliffe, J.M. Guccione, Circulation 114 (2006) 2627-2635.
DOI URL |
[121] | Y. Yao, J. Ding, Z. Wang, H. Zhang, J. Xie, Y. Wang, L. Hong, Z. Mao, J. Gao, C. Gao, Biomaterials 232 (2020) 119726. |
[122] |
K.L. Fujimoto, K. Tobita, W.D. Merryman, J. Guan, N. Momoi, D.B. Stolz, M.S. Sacks, B.B. Keller, W.R. Wagner, J. Am. Coll. Cardiol. 49 (2007) 2292-2300.
PMID |
[123] | R. Hashizume, K.L. Fujimoto, Y. Hong, J. Guan, C. Toma, K. Tobita, W.R. Wag-ner, J.Thorac. Cardiovasc. Surg. 146 (2013) 391-399. |
[124] |
K.L. Fujimoto, K. Tobita, J. Guan, R. Hashizume, K. Takanari, C.M. Alfieri, K.E. Yutzey, W.R. Wagner, J. Card. Failure 18 (2012) 585-595.
DOI URL |
[125] | R. Hashizume, Y. Hong, K. Takanari, K.L. Fujimoto, K. Tobita, W.R. Wagner, Bio-materials 34 (2013) 7353-7363. |
[126] |
A. Marsano, R. Maidhof, J. Luo, K. Fujikara, E.E. Konofagou, A. Banfi, G. Vun-jak-Novakovic, Biomaterials 34 (2013) 393-401.
DOI PMID |
[127] | R. Maidhof, A. Marsano, E.J. Lee, G. Vunjak-Novakovic, Biotechnol. Prog. 26 (2010) 565-572. |
[128] | J.C. Chachques, N. Lila, C. Soler-Botija, C. Martinez-Ramos, A. Valles, G. Autret, M.C. Perier, N. Mirochnik, M. Monleon-Pradas, A. Bayes-Genis, C.E. Semino, Eur. J. Cardio-Thorac.Surg. 57 (2020) 545-555. |
[129] | W.L. Chen, C.D. Kan, in: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2018, 2018, pp. 5338-5341. |
[130] |
R. Lakshmanan, P. Kumaraswamy, U.M. Krishnan, S. Sethuraman, Biomaterials 97 (2016) 176-195.
DOI PMID |
[131] |
C. Spadaccio, F. Nappi, F. De Marco, P. Sedati, C. Taffon, A. Nenna, A. Crescenzi, M. Chello, M. Trombetta, I. Gambardella, A. Rainer, J. Cardiovasc. Trans. Res. 10 (2017) 47-65.
DOI URL |
[132] | Q. Ke, Y. Yang, J.S. Rana, Y. Chen, J.P. Morgan, Y.F. Xiao, Acta Physiol. Sin. 57 (2005) 673-681. |
[133] | K. Matsubayashi, P.W. Fedak, D.A. Mickle, R.D. Weisel, T. Ozawa, R.K. Li, Circu-lation 108 (2003) 219-225. |
[134] |
Q. Zhou, J.Y. Zhou, Z. Zheng, H. Zhang, S.S. Hu, J. Thorac. Cardiovasc. Surg. 140 (2010) 1388-1396 e3.
DOI PMID |
[135] |
Y.D. Lin, M.C. Ko, S.T. Wu, S.F. Li, J.F. Hu, Y.J. Lai, H.I. Harn, I.C. Laio, M.L. Yeh, H.I. Yeh, M.J. Tang, K.C. Chang, F.C. Su, E.I. Wei, S.T. Lee, J.H. Chen, A.S. Hoff-man, W.T. Wu, P.C. Hsieh, Biomater. Sci. 2 (2014) 567-580.
DOI URL |
[136] |
R.S. Kellar, B.R. Shepherd, D.F. Larson, G.K. Naughton, S.K. Williams, Tissue Eng 11 (2005) 1678-1687.
DOI URL |
[137] |
T. Wu, C. Cui, Y. Huang, Y. Liu, C. Fan, X. Han, Y. Yang, Z. Xu, B. Liu, G. Fan, W. Liu, ACS Appl. Mater. Interfaces 12 (2020) 2039-2048.
DOI URL |
[138] |
Y. Wu, L. Wang, B. Guo, Y. Shao, P.X. Ma, Biomaterials 87 (2016) 18-31.
DOI URL |
[139] |
S. Caddeo, M. Mattioli-Belmonte, C. Cassino, N. Barbani, M. Dicarlo, P. Gen-tile, F. Baino, S. Sartori, C. Vitale-Brovarone, G. Ciardelli, Mater. Sci. Eng. C 96 (2019) 218-233.
DOI URL |
[140] |
F.E. Herrmann, A. Lehner, T. Hollweck, U. Haas, C. Fano, D. Fehrenbach, R. Ko-zlik-Feldmann, E. Wintermantel, G. Eissner, C. Hagl, B. Akra, J. Biomed. Mater. Res., Part A 102 (2014) 958-966.
DOI URL |
[141] |
H. Niu, J. Mu, J. Zhang, P. Hu, P. Bo, Y. Wang, J. Mater. Sci.: Mater. Med. 24 (2013) 1535-1542.
DOI URL |
[142] |
N. Baheiraei, H. Yeganeh, J. Ai, R. Gharibi, M. Azami, F. Faghihi, Mater. Sci. Eng. C 44 (2014) 24-37.
DOI URL |
[143] |
N. Baheiraei, R. Gharibi, H. Yeganeh, M. Miragoli, N. Salvarani, E. Di Pasquale, G. Condorelli, J. Biomed. Mater. Res., Part A 104 (2016) 1398-1407.
DOI URL |
[144] |
N. Baheiraei, R. Gharibi, H. Yeganeh, M. Miragoli, N. Salvarani, E. Di Pasquale, G. Condorelli, J. Biomed. Mater. Res., Part A 104 (2016) 775-787.
DOI URL |
[145] |
Y. Ganji, Q. Li, E.S. Quabius, M. Böttner, C. Selhuber-Unkel, M. Kasra, Mater. Sci. Eng. C 59 (2016) 10-18.
DOI URL |
[146] |
Y.D. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, Nat. Biotechnol. 20 (2002) 602-606.
DOI URL |
[147] |
T.L. Hu, Y.B. Wu, X. Zhao, L. Wang, L.Y. Bi, P.X. Ma, B.L. Guo, Chem. Eng. J. 366 (2019) 208-222.
DOI URL |
[148] |
D. Singh, A.J. Harding, E. Albadawi, F.M. Boissonade, J.W. Haycock, F. Claeyssens, Acta Biomater 78 (2018) 48-63.
DOI URL |
[149] |
G.C. Engelmayr Jr., M. Cheng, C.J. Bettinger, J.T. Borenstein, R. Langer, L.E. Freed, Nat. Mater. 7 (2008) 1003-1010.
DOI PMID |
[150] | Q.Z. Chen, H. Ishii, G.A. Thouas, A.R. Lyon, J.S. Wright, J.J. Blaker, W. Chrzanowski, A.R. Boccaccini, N.N. Ali, J.C. Knowles, S.E. Harding, Biomate-rials 31 (2010) 3885-3893. |
[151] |
S. Chen, M.H. Hsieh, S.H. Li, J. Wu, R.D. Weisel, Y. Chang, H.W. Sung, R.K. Li, J. Controlled Release 320 (2020) 73-82.
DOI URL |
[152] |
D. Kai, Q.L. Wang, H.J. Wang, M.P. Prabhakaran, Y. Zhang, Y.Z. Tan, S. Ramakr-ishna, Acta Biomater 10 (2014) 2727-2738.
DOI URL |
[153] |
Z.W. Tao, S. Wu, E.M. Cosgriff-Hernandez, J.G. Jacot, Acta Biomater 101 (2019) 206-218.
DOI URL |
[154] | S. Sharma, K. Hatware, P. Bhadane, S. Sindhikar, D.K. Mishra, Mater. Sci. Eng. C 103 (2019) 109717. |
[155] | A.J. Paredes, P.E. McKenna, I.K. Ramöller, Y.A. Naser, F. Volpe-Zanutto, M. Li, M.T.A. Abbate, L. Zhao, C. Zhang, J.M. Abu-Ershaid, X. Dai, R.F. Donnelly, Adv. Funct. Mater. 31 (2021) 2005792. |
[156] | J. Tang, J. Wang, K. Huang, Y. Ye, T. Su, L. Qiao, M.T. Hensley, T.G. Caranasos, J. Zhang, Z. Gu, K. Cheng, Sci. Adv. 4 (2018) eaat9365. |
[157] | J.N. Tang, J. Cores, K. Huang, X.L. Cui, L. Luo, J.Y. Zhang, T.S. Li, L. Qian, K. Cheng, Stem Cells Transl.Med. 7 (2018) 354-359. |
[158] | M. Solazzo, F.J. O’Brien, V. Nicolosi, M.G. Monaghan, APL Bioeng. 3 (2019) 041501. |
[159] |
X. Xie, Y. Chen, X. Wang, X. Xu, Y. Shen, A.u.R. Khan, A. Aldalbahi, A.E. Fetz, G.L. Bowlin, M. El-Newehy, X. Mo, J. Mater. Sci. Technol. 59 (2020) 243-261.
DOI URL |
[160] |
X. Lin, Y. Bai, H. Zhou, L. Yang, J. Mater. Sci. Technol. 59 (2020) 227-233.
DOI URL |
[1] | Alireza Nouri, Anahita Rohani Shirvan, Yuncang Li, Cuie Wen. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review [J]. J. Mater. Sci. Technol., 2021, 94(0): 196-215. |
[2] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[3] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[4] | Dan He, Haiyan Li. Biomaterials affect cell-cell interactions in vitro in tissue engineering [J]. J. Mater. Sci. Technol., 2021, 63(0): 62-72. |
[5] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[6] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[7] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[8] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[9] | Xiao Lin, Yanjie Bai, Huan Zhou, Lei Yang. Mechano-active biomaterials for tissue repair and regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 227-233. |
[10] | Chang-Yang Li, Xiao-Li Fan, Rong-Chang Zeng, Lan-Yue Cui, Shuo-Qi Li, Fen Zhang, Qing-Kun He, M. Bobby Kannan, , Dong-Chu Chen, Shao-Kang Guan. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA [J]. J. Mater. Sci. Technol., 2019, 35(6): 1088-1098. |
[11] | H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev. Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2156-2162. |
[12] | Xingfu Wang, Xinfu Wang, Dan Wang, Modi Zhao, Fusheng Han. A novel approach to fabricate Zn coating on Mg foam through a modified thermal evaporation technique [J]. J. Mater. Sci. Technol., 2018, 34(9): 1558-1563. |
[13] | Cui Lan-Yue, Hu Yan, Zeng Rong-Chang, Yang Yong-Xin, Sun Dan-Dan, Li Shuo-Qi, Zhang Fen, Han En-Hou. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions [J]. J. Mater. Sci. Technol., 2017, 33(9): 971-988. |
[14] | Zhen Zhen, Zheng Yufeng, Ge Zigang, Lai Chen, Xi Tingfei. Biological effect and molecular mechanism study of biomaterials based on proteomic research [J]. J. Mater. Sci. Technol., 2017, 33(7): 607-615. |
[15] | Ma Junxuan,Zhou Zhiyu,Gao Manman,Yu Binsheng,Xiao Deming,Zou Xuenong,Bünger Cody. Biosynthesis of Bioadaptive Materials: A Review on Developing Materials Available for Tissue Adaptation [J]. J. Mater. Sci. Technol., 2016, 32(9): 810-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||