J. Mater. Sci. Technol. ›› 2021, Vol. 87: 18-28.DOI: 10.1016/j.jmst.2020.12.075
• Research Article • Previous Articles Next Articles
Chaoye Zhua,1, Yao Zhanga,*,1(), Ziqiang Wua, Zhihong Mab,*(
), Xinli Guoa, Fuyi Guoa, Jiakun Zhanga, Yushu Lia
Received:
2020-09-13
Revised:
2020-11-07
Accepted:
2020-12-29
Published:
2021-10-10
Online:
2021-03-03
Contact:
Yao Zhang,Zhihong Ma
About author:
btzhma@sina.com (Z. Ma).Chaoye Zhu, Yao Zhang, Ziqiang Wu, Zhihong Ma, Xinli Guo, Fuyi Guo, Jiakun Zhang, Yushu Li. Closely packed Si@C and Sn@C nano-particles anchored by reduced graphene oxide sheet boosting anode performance of lithium ion batteries[J]. J. Mater. Sci. Technol., 2021, 87: 18-28.
Fig. 2. (a, b) TEM images of Si@C/(15)Sn@C/rGo; (c) HRTEM images of Si@C/(15)Sn@C/rGO; (d) Si and Sn particles are wrapped by carbon shell, denoted as Si@C and Sn@C; (e, f) C, O, Si and Sn mappings of Si@C/(15)Sn@C/rGO, respectively.
Fig. 3. XPS spectra of (a) Si 2p of Si@C/(15)Sn@C/rGO before charge-discharge cycle; (b) Sn 3d of Si@C/(15)Sn@C/rGO before charge-discharge cycle; (c) Si 2p of Si@C/(15)Sn@C/rGO after five charge-discharge cycles; (d) Sn 3d of Si@C/(15)Sn@C/rGO after five charge-discharge cycles.
Fig. 4. (a) Cyclic discharge capacities of Si@C/rGO, Si-Sn and Si@C/Sn@C/rGO samples within initial 60 cycles at a current density of 500 mA g-1; (b) Discharge curves at different cycle about Si@C/(15)Sn@C/rGO electrode; (c) Cyclic discharge capacities of Si@C/(15)Sn@C/rGO samples within initial 300 cycles at a current density of 1000 mA g-1; (d) Rate capability of Si@C/rGO, Si-Sn and Si@C/Sn@C/rGO electrodes at a specific current density increasing from 200 mA g-1 to 2000 mA g-1; (e) Cyclic voltammogram diagrams of Si@C/rGO electrode; (f) Si@C/(15)Sn@C/rGO electrode after initial 5 cycles.
Samples | Columbic efficiency (%) of the 1 st cycle | The discharge capacity (mAh g-1) of the 1 st cycle | The discharge capacity (mAh g-1) of the 60th cycle | The capacity retention rate (%) |
---|---|---|---|---|
Si@C/rGO | 69 | 2740 | 1181 | 43 |
Si-(15)Sn | 67.0 | 2789 | 1019 | 37 |
Si@C/(7.5)Sn@C/rGO | 79 | 2241 | 1129 | 50 |
Si@C/(15)Sn@C/rGO | 78 | 2680 | 1880 | 70 |
Si@C/(30)Sn@C/rGO | 78 | 2223 | 1067 | 48 |
Table 1 Coulombic efficiencies, cyclic discharge capacities, and capacity retention rates of Si-(15)Sn and Si@C/Sn@C/rGO samples.
Samples | Columbic efficiency (%) of the 1 st cycle | The discharge capacity (mAh g-1) of the 1 st cycle | The discharge capacity (mAh g-1) of the 60th cycle | The capacity retention rate (%) |
---|---|---|---|---|
Si@C/rGO | 69 | 2740 | 1181 | 43 |
Si-(15)Sn | 67.0 | 2789 | 1019 | 37 |
Si@C/(7.5)Sn@C/rGO | 79 | 2241 | 1129 | 50 |
Si@C/(15)Sn@C/rGO | 78 | 2680 | 1880 | 70 |
Si@C/(30)Sn@C/rGO | 78 | 2223 | 1067 | 48 |
Materials | Columbic efficiency (%) of the 1 st cycle | Current density (mA g-1) | Cycle number | Reversible capacity (mAh g-1) | Refs. |
---|---|---|---|---|---|
Macroporous Si/Sn composites | 75 | 200 | 70 | 1660 | [ |
Si-Sn-DHCNFs | 75.26 | 100 | 35 | 1000 | [ |
Si-Sn nanocomposites | 61.5 | 400 | 50 | 1100 | [ |
SiySn1-yOx@C | 75.9 | 100 | 150 | 823 | [ |
Si@C/Sn@C/rGO | 78 | 500 | 60 | 1880 | This work |
Table 2 Comparison of the present work with previously studied Sn-Si-C composite anodes in electrochemical performances.
Materials | Columbic efficiency (%) of the 1 st cycle | Current density (mA g-1) | Cycle number | Reversible capacity (mAh g-1) | Refs. |
---|---|---|---|---|---|
Macroporous Si/Sn composites | 75 | 200 | 70 | 1660 | [ |
Si-Sn-DHCNFs | 75.26 | 100 | 35 | 1000 | [ |
Si-Sn nanocomposites | 61.5 | 400 | 50 | 1100 | [ |
SiySn1-yOx@C | 75.9 | 100 | 150 | 823 | [ |
Si@C/Sn@C/rGO | 78 | 500 | 60 | 1880 | This work |
Fig. 5. (a) Nyquist diagrams of Si@C/rGO, Si-Sn and Si@C/Sn@C/rGO before charge-discharge cycle; (b) Relationship of Zreal-ω-1/2 curves in the low-frequency region of the Si@C/rGO, Si-Sn and Si@C/Sn@C/rGO samples.
Parameter | Si@C/rGO | Si-(15)Sn | Si@C/(7.5)Sn@C/rGO | Si@C/(15)Sn@C/rGO | Si@C/(30)Sn@C/rGO |
---|---|---|---|---|---|
Rct (Ω) | 160.9 | 145.9 | 73.3 | 62.5 | 55.1 |
DLi (cm2 s-1) | 1.8 × 10-18 | 2.4 × 10-18 | 1.2 × 10-17 | 5.6 × 10-17 | 1.9 × 10-17 |
Table 3 Charge transfer resistance values (Rct) and diffusion coefficient values (DLi) of Si-(15)Sn and Si@C/Sn@C/rGO samples.
Parameter | Si@C/rGO | Si-(15)Sn | Si@C/(7.5)Sn@C/rGO | Si@C/(15)Sn@C/rGO | Si@C/(30)Sn@C/rGO |
---|---|---|---|---|---|
Rct (Ω) | 160.9 | 145.9 | 73.3 | 62.5 | 55.1 |
DLi (cm2 s-1) | 1.8 × 10-18 | 2.4 × 10-18 | 1.2 × 10-17 | 5.6 × 10-17 | 1.9 × 10-17 |
Fig. 6. (a-d) HRTEM images of Si-(15)Sn@C/rGO after 60 cycles; (e) Enlarged graph of selected area; (f) TEM-EDS elemental mappings of Si-(15)Sn@C/rGO after 60 cycles; (g-i) The mappings of C, Si, Sn, respectively.
Fig. 7. SEM images of these anodes after 60 cycles: (a, c) Si@C/rGO; (b, d) Si@C/(15)Sn@C/rGO; Cross-sectional SEM images of those anodes before cycles; (e) Si@C/rGO; (f) Si@C/(15)Sn@C/rGO; Cross-sectional SEM images of those anodes after 60 cycles: (g) Si@C/rGO ; (h) Si@C/(15)Sn@C/rGO.
Fig. 8. (a) FTIR patterns of Si@C/rGO and Si@C/(15)Sn@C/rGO samples before cycles and after the 5th cycle; (b) Raman spectra of Si@C/rGO and before cycles and after the 5th cycle.(c) Raman spectra of Si@C/(15)Sn@C/rGO samples before cycles and after the 5th cycle.
[1] |
T. Tao, S. Lu, Y. Chen, Adv. Mater. Technol. 3 (2018) 1870034.
DOI URL |
[2] |
A. Bai, L. Wang, J. Li, X. He, J. Wang, J. Wang, J. Power Sources 289 (2015) 100-104.
DOI URL |
[3] |
H. Han, H. Park, K.C. Kil, Y. Jeon, Y. Ko, C. Lee, M. Kim, C.W. Cho, K. Kim, U. Paik, T. Song, Electrochim. Acta 166 (2015) 367-371.
DOI URL |
[4] |
M.T. Mcdowell, S.W. Lee, W.D. Nix, Y. Cui, Adv. Mater. 25 (2013) 4966-4985.
DOI URL |
[5] | D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics Diff. React. 148 (2002) 405-416. |
[6] |
N. Liu, L. Hu, M.T. Mcdowell, A. Jackson, Y. Cui, ACS Nano 5 (2011) 6487-6493.
DOI URL |
[7] |
S.C. Jung, J.W. Choi, Y. Han, Nano Lett. 12 (2012) 5342-5347.
DOI URL |
[8] |
S. Choi, T. Bok, J. Ryu, J.I. Lee, J. Cho, S. Park, Nano Energy 12 (2015) 161-168.
DOI URL |
[9] |
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.J. Cheng, Nano Energy 31 (2017) 113-143.
DOI URL |
[10] |
S. Xin, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, W. Ji, Adv. Energy Mater. 4 (2014) 1300882.
DOI URL |
[11] |
Y. Chen, L. Bao, N. Du, T. Yang, Q. Mao, Nanotechnology 30 (2018) 035602.
DOI URL |
[12] |
M. Ge, Y. Lu, P. Ercius, J. Rong, C. Zhou, Nano Lett. 14 (2013) 261-268.
DOI URL |
[13] |
Y. Yao, M.T. Mcdowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Nano Lett. 11 (2011) 2949-2954.
DOI URL |
[14] |
C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, Y. Cui, ACS Nano 4 (2010) 1443-1450.
DOI URL |
[15] |
V. Chabot, K. Feng, H.W. Park, F.M. Hassan, A.R. Elsayed, A. Yu, X. Xiao, Z. Chen, Electrochim. Acta 130 (2014) 127-134.
DOI URL |
[16] |
Q. Li, X. Liu, X. Han, Y. Xiang, Y. Yang, ACS Appl. Mater. Interfaces 11 (2019) 14066-14075.
DOI URL |
[17] |
H. Chen, N.C. Lai, Y.C. Lu, Chem. Mater. 29 (2017) 7533-7542.
DOI URL |
[18] |
M.S. Park, S. Rajendran, Y.M. Kang, J. Power Sources 158 (2006) 650-653.
DOI URL |
[19] | H. Usui, Y. Kashiwa, T. Iida, H. Sakaguchi, Electrochemistry 195 (2010) 3649-3654. |
[20] |
W. Ke, X. He, W. Li, J. Ren, C. Jiang, C. Wan, Solid State Ion. 178 (2007) 115-118.
DOI URL |
[21] |
T. Xu, N. Lin, W. Cai, Z. Yi, J. Zhou, Y. Han, Y. Zhu, Y. Qian, Inorg. Chem. Front. 5 (2018) 1463-1469.
DOI URL |
[22] |
Q. Hao, D. Zhao, H. Duan, Q. Zhou, C. Xu, Nanoscale 7 (2015) 5320-5327.
DOI URL |
[23] |
Q. Hao, J. Hou, J. Ye, H. Yang, J. Du, C. Xu, Electrochim. Acta 306 (2019) 427-436.
DOI URL |
[24] | J. Wu, Z. Zhu, H. Zhang, H. Fu, H. Li, A. Wang, H. Zhang, Sci. Rep. UK 6 (2016) 29356. |
[25] | B. Lee, H. Yang, K.H. Lee, S. Han, W. Yu, Energy Storage Mater. 17 (2019) 62-69. |
[26] |
Z. Long, F. Yin, Y. Liu, H. Liu, Z. Jin, J. Phase Equilib. Diffus. 33 (2012) 97-105.
DOI URL |
[27] |
Y. Kang, L. Min, L. Gao, T. Wei, J. Phys. Chem. Lett. 9 (2018) 5130-5134.
DOI PMID |
[28] |
Y. Tan, K.W. Wong, K.M. Ng, Small 13 (2017) 1702614.
DOI URL |
[29] |
Z.L. Xu, B. Zhang, J.K. Kim, Nano Energy 6 (2014) 27-35.
DOI URL |
[30] |
L. Fei, S.H. Yoo, R.A.R. Villamayor, B.P. Williams, S.Y. Gong, S. Park, K. Shin, Y.L. Joo, ACS Appl. Mater. Interfaces 9 (2017) 9738-9746.
DOI URL |
[31] |
X. Wang, Z. Wen, L. Yu, X. Wu, Electrochim. Acta 54 (2009) 4662-4667.
DOI URL |
[32] |
Z. Jiang, B. Pei, A. Manthiram, J. Mater. Chem. A 1 (2013) 7775.
DOI URL |
[33] |
A. Putz, M.V. Putz, Int. J. Mol. Sci. 13 (2012) 15925-15941.
DOI URL |
[34] |
S. Sun, Y. Yin, N. Wan, Q. Wu, X. Zhang, D. Pan, Y. Bai, X. Lu, ChemSusChem 8 (2015) 2544-2550.
DOI URL |
[35] |
X. Zhang, S. Sun, Q. Wu, N. Wan, D. Pan, Y. Bai, J. Power Sources 282 (2015) 378-384.
DOI URL |
[36] |
D. Aurbach, Y. Gofer, M. Ben-Zion, P. Aped, J. Electroanal. Chem. 339 (1992) 451-471.
DOI URL |
[37] |
Y. Bai, K. Jiang, S. Sun, Q. Wu, X. Lu, N. Wan, Electrochim. Acta 134 (2014) 347-354.
DOI URL |
[38] |
X. Zhang, A. Vyatskikh, H. Gao, J.R. Greer, X. Li, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 6665-6672.
DOI URL |
[1] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[2] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[3] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
[4] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[5] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[6] | Chunhai Jiang, Wenyang Zhou, Zhimin Zou. Nitrogen and oxygen co-doped mesoporous carbon spheres as capacitive anode for high performance sodium-ion capacitors [J]. J. Mater. Sci. Technol., 2021, 83(0): 188-195. |
[7] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[8] | Qianqian Hu, Biao Wang, Shiyong Chang, Chun Yang, Yunjian Hu, Shubin Cao, Jiqun Lu, Lingzhi Zhang, Ye Hong. Effects of annealing temperature on electrochemical performance of SnSx embedded in hierarchical porous carbon with N-carbon coating by in-situ structural phase transformation as anodes for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 84(0): 191-199. |
[9] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[10] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[11] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[12] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[13] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
[14] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
[15] | Jian Han, Xiaonan Tang, Shaofan Ge, Ying Shi, Chengzhi Zhang, Feng Li, Shuo Bai. Si/C particles on graphene sheet as stable anode for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 259-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||