J. Mater. Sci. Technol. ›› 2020, Vol. 41: 33-42.DOI: 10.1016/j.jmst.2019.08.052
• Research Article • Previous Articles Next Articles
Jiarun Lia,c,d, Zhuoyuan Chena,b,c,d,*(), Jiangping Jinga,c,d, Jian Houb
Received:
2019-05-17
Revised:
2019-08-02
Accepted:
2019-08-26
Published:
2019-11-16
Online:
2019-11-16
Contact:
Zhuoyuan Chen
About author:
*Key Laboratory of Marine Environmental Corrosionand Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 NanhaiRoad, Qingdao, 266071, China.E-mail address: zychen@qdio.ac.cn (Z. Chen).Jiarun Li, Zhuoyuan Chen, Jiangping Jing, Jian Hou. Electrochemical behavior of Mg-Al-Zn-Ga-In alloy as the anode for seawater-activated battery[J]. J. Mater. Sci. Technol., 2020, 41: 33-42.
Alloys | Al | Zn | Ga | In | Mg |
---|---|---|---|---|---|
AZG0 | 5.771 | 2.793 | 0.951 | - | Bal. |
AZGI0.5 | 5.762 | 2.762 | 0.954 | 0.467 | Bal. |
AZGI1.0 | 5.653 | 2.753 | 0.923 | 0.911 | Bal. |
AZGI2.0 | 5.672 | 2.769 | 0.961 | 1.831 | Bal. |
Table 1. Actual chemical compositions (wt.%) of the prepared alloys.
Alloys | Al | Zn | Ga | In | Mg |
---|---|---|---|---|---|
AZG0 | 5.771 | 2.793 | 0.951 | - | Bal. |
AZGI0.5 | 5.762 | 2.762 | 0.954 | 0.467 | Bal. |
AZGI1.0 | 5.653 | 2.753 | 0.923 | 0.911 | Bal. |
AZGI2.0 | 5.672 | 2.769 | 0.961 | 1.831 | Bal. |
Fig. 4. Hydrogen evolution volumes as a function of immersion time (a), and weight losses (b) of these AZG0 and AZGI alloys in 3.5 wt.% NaCl at 25 ± 1 °C.
Fig. 5. Corrosion morphologies of AZG and AZGI alloys after immersion tests for 36 h in 3.5 wt.% NaCl at 25 ± 1 °C: AZG0 alloy (a), AZGI 0.5 alloy (b), AZGI 1.0 alloy (c) and AZGI2.0 alloy (d).
Fig. 7. Nyquist diagrams of AZG0, AZGI0.5, AZGI1.0, and AZGI2.0 alloys obtained after immersion for 3600 s in 3.5 wt.% NaCl at 25 ± 1 °C (a); (b) is the corresponding equivalent circuit for fitting the Nyquist plots in Fig. 7(a).
Alloy | Rs/(Ω cm2) | Rt/(Ω cm2) | Ydl/(Ω-1 cm-2 sn) | ndl | RL/(Ω cm2) | L/(Ω cm2 s) | Rp/(Ω cm2) |
---|---|---|---|---|---|---|---|
AZG0 | 4.350 | 1149.1 | 4.623 × 10-6 | 0.908 | 789.5 | 6894 | 467.9 |
AZGI0.5 | 5.691 | 621.3 | 8.711 × 10-6 | 0.925 | 223.4 | 2261 | 164.3 |
AZGI1.0 | 7.134 | 373.8 | 1.078 × 10-5 | 0.917 | 107.9 | 793.1 | 83.73 |
AZGI2.0 | 7.446 | 179.3 | 1.352 × 10-5 | 0.921 | 68.34 | 842.9 | 49.48 |
Table 2. Electrochemical parameters of AZG0 and AZGI alloys obtained by fitting the electrochemical impedance spectra.
Alloy | Rs/(Ω cm2) | Rt/(Ω cm2) | Ydl/(Ω-1 cm-2 sn) | ndl | RL/(Ω cm2) | L/(Ω cm2 s) | Rp/(Ω cm2) |
---|---|---|---|---|---|---|---|
AZG0 | 4.350 | 1149.1 | 4.623 × 10-6 | 0.908 | 789.5 | 6894 | 467.9 |
AZGI0.5 | 5.691 | 621.3 | 8.711 × 10-6 | 0.925 | 223.4 | 2261 | 164.3 |
AZGI1.0 | 7.134 | 373.8 | 1.078 × 10-5 | 0.917 | 107.9 | 793.1 | 83.73 |
AZGI2.0 | 7.446 | 179.3 | 1.352 × 10-5 | 0.921 | 68.34 | 842.9 | 49.48 |
Alloys | 10 mA cm-2, 10 h | |
---|---|---|
Average Potential (vs. SCE)/V | Faradic efficiency (%) | |
AZG0 | –1.531 ± 0.014 | 65.43 |
AZGI0.5 | –1.551 ± 0.021 | 67.14 |
AZGI1.0 | –1.634 ± 0.001 | 72.25 |
AZGI2.0 | –1.636 ± 0.002 | 47.69 |
Table 3. Discharge parameters of AZG0 and AZGI alloys in 3.5 wt.% NaCl at 10 mA cm―2 for 10 h.
Alloys | 10 mA cm-2, 10 h | |
---|---|---|
Average Potential (vs. SCE)/V | Faradic efficiency (%) | |
AZG0 | –1.531 ± 0.014 | 65.43 |
AZGI0.5 | –1.551 ± 0.021 | 67.14 |
AZGI1.0 | –1.634 ± 0.001 | 72.25 |
AZGI2.0 | –1.636 ± 0.002 | 47.69 |
Fig. 9. Morphologies of AZG0 and AZGI alloys after 10 mA·cm-2 10 h discharge in 3.5 wt%NaCl at 25 ± 1 °C: AZG0 with (a) and without (b) discharge products; AZGI0.5 with (c) and without (d) discharge products; AZGI1.0 with (e) and without (f) discharge products; AZGI2.0 with (g) and without (h) discharge products.
Fig. 10. Performance of Mg-CuCl seawater-activated cell with AZG0, AZGI0.5 and AZGI1.0 and AZGI2.0 anodes in 3.5 wt.% NaCl at 25 ± 1 °C: Plots of current density vs. cell voltage (a) and plots of current density vs. power density (b).
[1] |
G.L. Song, Z. Shi, Corros. Sci. 85 (2014) 126-140.
DOI URL |
[2] |
Y. Lv, M. Liu, Y. Xu, D. Cao, J. Feng, J. Power Sources 225 (2013) 124-128.
DOI URL |
[3] |
R.C. Zeng, X.T. Li, L.J. Liu, S.Q. Li, F. Zhang, J. Mater. Sci. Technol. 32 (2016)437-444.
DOI URL |
[4] |
R.C. Zeng, F. Zhang, Z.D. Lan, H.Z. Cui, E.H. Han, Corros. Sci. 88 (2014) 452-459.
DOI URL |
[5] |
X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2018)245-247.
DOI |
[6] |
G. Duan, L. Yang, S. Liao, C. Zhang, X. Lu, Y. Yang, B. Zhang, Y. Wei, T. Zhang, B. Yu, X. Zhang, F. Wang, Corros. Sci. 135 (2018) 197-206.
DOI URL |
[7] |
T. Zheng, Y. Hu, Y. Zhang, S. Yang, F. Pan, Mater. Des. 137 (2018) 245-255.
DOI URL |
[8] | M. Shinohara, E. Araki, M. Mochizuki, T. Kanazawa, K. Suyehiro, J. PowerSources 187 (2009) 253-260. |
[9] | O. Hasvold, T. Lian, E. Haakaas, N. Storkersen, O. Perelman, S. Cordier, J. PowerSources 136 (2004) 232-239. |
[10] |
S. Johnston, Z. Shi, A. Atrens, Corros. Sci. 101 (2015) 182-192.
DOI URL |
[11] |
J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111 (2016) 288-301.
DOI URL |
[12] |
T. Zhang, Z. Tao, J. Chen, Mater. Horiz. 1 (2014) 196-206.
DOI URL |
[13] |
Y. Feng, W. Xiong, J. Zhang, R. Wang, N. Wang, J. Mater. Chem. A 4 (2016)8658-8668.
DOI URL |
[14] |
R. Udhayan, D.P. Bhatt, J. Power Sources 63 (1996) 103-107.
DOI URL |
[15] |
K. Gusieva, C. H.J. Davies, J.R. Scully, N. Birbilis, Int. Mater. Rev. 60 (2015)169-194.
DOI URL |
[16] |
M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, Y. Chino, J. Power Sources 297(2015) 449-456.
DOI URL |
[17] | R.C. Zeng, L.Y. Cui, W. Ke, Acta Metall. 54 (2018) 1215-1235. |
[18] |
G.V. Baril, C. Blanc, N. Pébe$\grave{r}$e, J. Electrochem. Soc. 148 (2001) B489.
DOI URL |
[19] |
G.L. Song, A. Atrens, M. Dargusch, Corros. Sci. 41 (1999) 249-273.
DOI URL |
[20] |
P.W. Chu, E.A. Marquis, Corros. Sci. 101 (2015) 94-104.
DOI URL |
[21] |
Y. Song, E.H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 65 (2012) 322-330.
DOI URL |
[22] |
H. Jia, X. Feng, Y. Yang, J. Mater. Sci. Technol. 34 (2018) 1229-1235.
DOI URL |
[23] | N. Wang, R. Wang, C. Peng, Y. Feng, J.Cent. South Univ. 19 (2012) 9-16. |
[24] |
Y. Feng, R. Wang, K. Yu, C. Peng, W. Li, Trans. Nonferr. Metal. Soc. 17 (2007)1363-1366.
DOI URL |
[25] |
J. Li, X. Ma, Z. Chen, B. Hou, L. Xu, J. Mater. Eng. Perform. 27 (2018) 5460-5469.
DOI URL |
[26] |
D.O. Flamini, S.B. Saidman, J.B. Bessone, Corros. Sci. 48 (2006) 1413-1425.
DOI URL |
[27] |
J. Li, K. Wan, Q. Jiang, H. Sun, Y. Li, B. Hou, L. Zhu, M. Liu, Metals 6 (2016) 65.
DOI URL |
[28] |
I. Smoljko, S. Gudi´c, N. Kuzmani´c, M. Kliˇski´c, J. Appl. Electrochem. 42 (2012)969-977.
DOI URL |
[29] |
A. Zazoua, N. Azzouz, Mater. Des. 29 (2008) 806-810.
DOI URL |
[30] |
G.L. Song, A. Atrens, X.L. Wu, B. Zhang, Corros. Sci. 40 (1998) 1769-1791.
DOI URL |
[31] |
R. Arrabal, B. Mingo, A. Pardo, E. Matykina, M. Mohedano, M.C. Merino, A. Rivas, A. Maroto, Corros. Sci. 97 (2015) 38-48.
DOI URL |
[32] |
J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, Z. Yu, Electrochim. Acta 56 (2011)8224-8231.
DOI URL |
[33] |
M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, Y. Chino, Mater. Trans. 55 (2014)1202-1207.
DOI URL |
[34] |
N. Wang, R. Wang, C. Peng, C. Hu, Y. Feng, B. Peng, Trans. Nonferr. Metal. Soc. 24 (2014) 2427-2439.
DOI URL |
[35] |
M. Anik, I.M. Guneşdoğdu, Mater. Des. 31 (2010) 3100-3105.
DOI URL |
[36] |
H. Altun, S. Sen, Mater. Des. 25 (2004) 637-643.
DOI URL |
[37] |
M. Andrei, F. Di Gabriele, P. Bonora, D. Scantlebury, Mater. Corros. 54 (2003)5-11.
DOI URL |
[38] |
J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochim. Acta 238 (2017) 156-167.
DOI URL |
[39] |
H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, J. Alloys. Compd. 695 (2017)2330-2338.
DOI URL |
[40] | J.L. Murray, Bull. Alloy Phase Diagram 3 (1) (1982) 60-74. |
[41] |
N. Hashemi, A. A, J.B. Clark, Bull. Alloy. Phase Diagr. 6 (5) (1985) 434-439.
DOI URL |
[42] | N. Hashemi, A. A, J.B. Clark, Bull. Alloys Phase Diagr. 6 (2) (1985) 149-160. |
[43] |
N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, C. Hu, Electrochim. Acta 149(2014) 193-205.
DOI URL |
[44] | G. Wu, Characterization and Application of Materials, Chemical IndustryPress, China, 2001, pp. 253-255. (in Chinese) |
[45] | T.J. Andeson, I. Ansara, Bull. Alloys Phase Diagr. 12 (1) (1991) 64-72. |
[46] |
N. Wang, Y. Mu, W. Xiong, J. Zhang, Q. Li, Z. Shi, Corros. Sci. 144 (2018)107-126.
DOI URL |
[47] |
B.J. Wang, D.K. Xu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 34 (2018)1756-1764.
DOI |
[48] |
Y. Li, T. Zhang, F. Wang, Electrochim. Acta 51 (2006) 2845-2850.
DOI URL |
[49] |
N. Wang, R. Wang, C. Peng, Y. Feng, J. Mater. Eng. Perform. 21 (2011)1300-1308.
DOI URL |
[50] | M. Deng, D. Höche, S.V. Lamaka, D. Snihirova, M.L. Zheludkevich, J. PowerSources 396 (2018) 109-118. |
[51] |
E.L. Silva, S.V. Lamaka, D. Mei, M.L. Zheludkevich, ChemistryOpen 7 (2018)664-668.
DOI URL |
[52] |
M.C. Reboul, P. Gimenez, J.J. Rameau, Corrosion 40 (1984) 366-371.
DOI URL |
[53] | W. Liu, F. Cao, A. Chen, L. Chang, J. Zhang, C. Cao, Corrosion 68 (2012), 045001. |
[54] |
M. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50 (2008) 3168-3178.
DOI URL |
[55] |
G. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li, Corros. Sci. 39 (1997) 855-875.
DOI URL |
[56] | G.L. Song, A. Atrens, Adv.Eng. Mater. 1 (1999) 11-33. |
[57] |
G.R. Hoey, M. Cohen, J. Electrochem. Soc. 105 (1958) 245-250.
DOI URL |
[58] |
C. Ke, M.S. Song, R.C. Zeng, Y. Qiu, Y. Zhang, R.F. Zhang, R.-L. Liu, I. Cole, N. Birbilis, X.B. Chen, Corros. Sci. 151 (2019) 143-153.
DOI URL |
[59] |
A.D. King, N. Birbilis, J.R. Scully, Electrochim. Acta 121 (2014) 394-406.
DOI URL |
[60] |
W. Li, C. Li, C. Zhou, H. Ma, J. Chen, Angew. Chem. Int. Ed. 45 (2006) 6009-6012.
DOI URL |
[61] |
R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, E.H. Han, Corros. Sci. 79 (2014) 69-82.
DOI URL |
[62] |
C. Cao, Electrochim. Acta 35 (1990) 831-836.
DOI URL |
[63] |
G.S. Frankel, A. Samaniego, N. Birbilis, Corros. Sci. 70 (2013) 104-111.
DOI URL |
[64] |
R.L. Petty, A.W. Davidson, J. Kleinberg, J. Am. Chem. Soc. 76 (1954) 363-366.
DOI URL |
[65] |
A. Samaniego, B.L. Hurley, G.S. Frankel, J. Electroanal. Chem. 737 (2015)123-128.
DOI URL |
[66] |
P. Agarwal, M.E. Orazem, L.H. Garcia-Rubio, J. Electrochem. Soc. 139 (1992)1917-1927.
DOI URL |
[67] |
C. Ke, Y. Wu, Y. Qiu, J. Duan, N. Birbilis, X.B. Chen, Corros. Sci. 113 (2016)145-159.
DOI URL |
[68] |
Y. Song, D. Shan, R. Chen, E.H. Han, Corros. Sci. 51 (2009) 1087-1094.
DOI URL |
[69] |
X. Liu, J. Xue, D. Zhang, J. Alloys Compd. 790 (2019) 822-828.
DOI URL |
[70] |
N. Wang, R. Wang, C. Peng, Y. Feng, Corros. Sci. 81 (2014) 85-95.
DOI URL |
[71] |
A.R. Suresh Kannan, S. Muralidharan, K.B. Sarangapani, V. Balaramachandran, V. Kapali, J. Power Sources 57 (1995) 93-98.
DOI URL |
[72] |
Y. Feng, R. Wang, C. Peng, Trans. Nonferr. Metal. Soc. 23 (2013) 2650-2656.
DOI URL |
[73] |
J.G. Kim, S.J. Koo, Corrosion 56 (2000) 380-388.
DOI URL |
[74] | G.G. Perrault, Magnesium, in: A.J. Bard (Ed.), Encyclopedia of Electrochemistryof the Elements, Vol III, Marcel Dekker, New York, 1978. |
[75] |
N. Wang, R. Wang, Y. Feng, W. Xiong, J. Zhang, M. Deng, Corros. Sci. 112 (2016)13-24.
DOI URL |
[76] |
N. Wang, R. Wang, C. Peng, Y. Feng, B. Chen, Corros. Sci. 64 (2012) 17-27.
DOI URL |
[77] |
Y. Lv, M. Liu, Y. Xu, D. Cao, J. Feng, R. Wu, M. Zhang, J. Power Sources 239(2013) 265-268.
DOI URL |
[78] |
Y. Lv, Y. Xu, D. Cao, J. Power Sources 196 (2011) 8809-8814.
DOI URL |
[1] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[2] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[3] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[4] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[5] | Guanshui Ma, Dong Zhang, Peng Guo, Hao Li, Yang Xin, Zhenyu Wang, Aiying Wang. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates [J]. J. Mater. Sci. Technol., 2022, 105(0): 36-44. |
[6] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
[7] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[8] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
[9] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[10] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[11] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[12] | S. Pugal Mani, P. Agilan, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng. Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell [J]. J. Mater. Sci. Technol., 2022, 97(0): 134-146. |
[13] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[14] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[15] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||