J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (9): 2086-2098.DOI: 10.1016/j.jmst.2019.04.012
• Orginal Article • Previous Articles Next Articles
Cheng Zhangab, Liang Wuab*(), Guangsheng Huangabc*(
), Lin Chenab, Dabiao Xiaab, Bin Jiangabc, Andrej Atrensd, Fusheng Panabc
Received:
2018-08-27
Revised:
2018-10-06
Accepted:
2018-10-23
Online:
2019-09-20
Published:
2019-07-26
Contact:
Wu Liang,Huang Guangsheng
About author:
1 These authors contributed equally to this work.
Cheng Zhang, Liang Wu, Guangsheng Huang, Lin Chen, Dabiao Xia, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of Fe concentration on microstructure and corrosion of Mg-6Al-1Zn-xFe alloys for fracturing balls applications[J]. J. Mater. Sci. Technol., 2019, 35(9): 2086-2098.
Samples | Fe | Zn | Al | Mg |
---|---|---|---|---|
Mg-6Al-1Zn | 0.03 | 0.89 | 7.00 | Bal. |
Mg-6Al-1Zn-1Fe | 1.20 | 0.86 | 7.13 | Bal. |
Mg-6Al-1Zn-3Fe | 3.10 | 0.88 | 6.92 | Bal. |
Mg-6Al-1Zn-5Fe | 4.78 | 0.92 | 7.28 | Bal. |
Mg-6Al-1Zn-7Fe | 6.74 | 0.94 | 6.58 | Bal. |
Table 1 Chemical composition of the five alloys (wt%).
Samples | Fe | Zn | Al | Mg |
---|---|---|---|---|
Mg-6Al-1Zn | 0.03 | 0.89 | 7.00 | Bal. |
Mg-6Al-1Zn-1Fe | 1.20 | 0.86 | 7.13 | Bal. |
Mg-6Al-1Zn-3Fe | 3.10 | 0.88 | 6.92 | Bal. |
Mg-6Al-1Zn-5Fe | 4.78 | 0.92 | 7.28 | Bal. |
Mg-6Al-1Zn-7Fe | 6.74 | 0.94 | 6.58 | Bal. |
Fig. 8. TEM analyses for as-annealed Mg-6Al-1Zn-7Fe alloy: (a) the morphology and corresponding EDS result of Fe particle, (b) the morphology and corresponding EDS result of β-Mg17Al12 phase, (c) and (d) dislocations.
Fig. 9. Hydrogen evolution rates for Mg-6Al-1Zn-xFe (x = 0, 1, 3, 5 and 7 wt%) alloys during immersion in 3.5 wt% NaCl solution for 10 h: (a) as-extruded alloys and (b) as-annealed alloys.
Fig. 10. Weight loss rates and optical morphologies of Mg-6Al-1Zn-xFe (x = 0, 1, 3, 5 and 7 wt%) alloys after immersion in 3.5 wt% NaCl solution for two days.
Fig. 11. Open circuit potentials of Mg-6Al-1Zn-xFe (x = 0, 1, 3, 5 and 7 wt%) alloys after immersion in 3.5 wt% NaCl solution: (a) as-extruded alloys and (b) as-annealed alloys.
Fig. 12. Potentiodynamic polarization curves of Mg-6Al-1Zn-xFe (x = 0, 1, 3, 5 and 7 wt%) alloys after immersion in 3.5 wt% NaCl solution for 600 s: (a) as-extruded alloys and (b) as-annealed alloys.
Samples | Equilibrium potential Ecorr (V) | Corrosion Current Density icorr (A cm-2) | Corrosion rate, (mm y-1) | |
---|---|---|---|---|
As-extruded | Mg-6Al-1Zn | -1.493 | 1.20 × 10-3 | 27 |
Mg-6Al-1Zn-1Fe | -1.468 | 1.51 × 10-3 | 34 | |
Mg-6Al-1Zn-3Fe | -1.483 | 2.34 × 10-3 | 53 | |
Mg-6Al-1Zn-5Fe | -1.437 | 4.01 × 10-3 | 91 | |
Mg-6Al-1Zn-7Fe | -1.482 | 5.13 × 10-3 | 116 | |
As-annealed | Mg-6Al-1Zn | -1.486 | 6.93 × 10-4 | 17 |
Mg-6Al-1Zn-1Fe | -1.468 | 1.06 × 10-3 | 24 | |
Mg-6Al-1Zn-3Fe | -1.447 | 1.84 × 10-3 | 42 | |
Mg-6Al-1Zn-5Fe | -1.476 | 3.40 × 10-3 | 77 | |
Mg-6Al-1Zn-7Fe | -1.461 | 4.12 × 10-3 | 93 |
Table 2 Corrosion parameters obtained from polarization curves.
Samples | Equilibrium potential Ecorr (V) | Corrosion Current Density icorr (A cm-2) | Corrosion rate, (mm y-1) | |
---|---|---|---|---|
As-extruded | Mg-6Al-1Zn | -1.493 | 1.20 × 10-3 | 27 |
Mg-6Al-1Zn-1Fe | -1.468 | 1.51 × 10-3 | 34 | |
Mg-6Al-1Zn-3Fe | -1.483 | 2.34 × 10-3 | 53 | |
Mg-6Al-1Zn-5Fe | -1.437 | 4.01 × 10-3 | 91 | |
Mg-6Al-1Zn-7Fe | -1.482 | 5.13 × 10-3 | 116 | |
As-annealed | Mg-6Al-1Zn | -1.486 | 6.93 × 10-4 | 17 |
Mg-6Al-1Zn-1Fe | -1.468 | 1.06 × 10-3 | 24 | |
Mg-6Al-1Zn-3Fe | -1.447 | 1.84 × 10-3 | 42 | |
Mg-6Al-1Zn-5Fe | -1.476 | 3.40 × 10-3 | 77 | |
Mg-6Al-1Zn-7Fe | -1.461 | 4.12 × 10-3 | 93 |
Fig. 13. Optical micrographs of Mg-6Al-1Zn-xFe (x = 0, 1, 3, 5 and 7 wt%) alloys after immersion in 3.5 wt% NaCl solution for 10 min: (a) as-extruded alloys and (b) as-annealed alloys.
Fig. 14. SEM micrographs of Mg-6Al-1Zn-xFe (x = 0, 1, 3, 5 and 7 wt%) alloys after immersion in 3.5 wt% NaCl solution for 10 min: (a) as-extruded alloys and (b) as-annealed alloys.
|
[1] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[2] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[7] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[8] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[9] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[10] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[11] | Pingli Jiang, Carsten Blawert, Jan Bohlen, Mikhail L. Zheludkevich. Corrosion performance, corrosion fatigue behavior and mechanical integrity of an extruded Mg4Zn0.2Sn alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 107-116. |
[12] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[13] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
[14] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park, Unhae Lee. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 57(0): 123-130. |
[15] | Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃ [J]. J. Mater. Sci. Technol., 2020, 45(0): 125-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||