J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1499-1507.DOI: 10.1016/j.jmst.2019.03.003
• Orginal Article • Previous Articles Next Articles
Decheng Konga, Chaofang Donga*(), Xiaoqing Nib*(
), Liang Zhangb, Jizheng Yaoa, Cheng Manc, Xuequn Chenga, Kui Xiaoa, Xiaogang Lia
Received:
2019-01-03
Revised:
2019-01-19
Accepted:
2019-01-28
Online:
2019-07-20
Published:
2019-06-20
Contact:
Dong Chaofang,Ni Xiaoqing
About author:
1These authors contributed equally to this work.
Decheng Kong, Chaofang Dong, Xiaoqing Ni, Liang Zhang, Jizheng Yao, Cheng Man, Xuequn Cheng, Kui Xiao, Xiaogang Li. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. J. Mater. Sci. Technol., 2019, 35(7): 1499-1507.
Fig. 1. Three-dimensional inverse pole figures of SLMed 316 L stainless steel specimens obtained via EBSD after different heat treatment durations: (a) as-received; (b) 1050 °C for 0.5 h; (c) 1050 °C for 1 h; (d) 1050 °C for 2 h; (e) 1200 °C for 0.5 h; (f) 1200 °C for 1 h; (g) 1200 °C for 2 h.
Fig. 2. Grain size distributions on different planes of SLMed 316 L stainless steel specimens after heat treatment for different durations: (a) xoy plane; (b) xoz plane; (c) yoz plane.
Fig. 3. Misorientation angle distributions on different planes of SLMed 316 L stainless steel specimens after heat treatment for different durations: (a) xoy plane; (b) xoz plane; (c) yoz plane.
Fig. 4. Three-dimensional KAM results of SLMed 316 L stainless steel specimens after heat treatment for different durations: (a) as-received; (b) 1050 °C for 0.5 h; (c) 1050 °C for 1 h; (d) 1050 °C for 2 h; (e) 1200 °C for 0.5 h; (f) 1200 °C for 1 h; (g) 1200 °C for 2 h.
Fig. 5. Bright-field TEM images of SLMed 316 L stainless steel specimens: (a, b) as-received; (c, d) heat-treated at 1050 °C for 2 h; (e, f) heat-treated at 1200 °C for 2 h.
Condition | YS (MPa) | UTS (MPa) | ef (%) | Source |
---|---|---|---|---|
As-received | 637.9 ± 11.3 | 751.6 ± 15.9 | 41.2 ± 2.7 | This work |
1050 °C, 2 h | 423.8 ± 8.4 | 672.8 ± 13.4 | 43.9 ± 3.1 | This work |
1200 °C, 2 h | 415.7 ± 9.1 | 683.9 ± 16.4 | 51.6 ± 2.6 | This work |
Wrought | $\widetilde{3}$ 00 | $\widetilde{6}$ 20 | $\widetilde{5}$ 0 | [ |
Table 1 Summary of mechanical properties of SLMed 316 L stainless steel before and after heat treatment.
Condition | YS (MPa) | UTS (MPa) | ef (%) | Source |
---|---|---|---|---|
As-received | 637.9 ± 11.3 | 751.6 ± 15.9 | 41.2 ± 2.7 | This work |
1050 °C, 2 h | 423.8 ± 8.4 | 672.8 ± 13.4 | 43.9 ± 3.1 | This work |
1200 °C, 2 h | 415.7 ± 9.1 | 683.9 ± 16.4 | 51.6 ± 2.6 | This work |
Wrought | $\widetilde{3}$ 00 | $\widetilde{6}$ 20 | $\widetilde{5}$ 0 | [ |
Condition | Rs (Ω cm2) | Cdl (μF/cm2) | n1 | Rct (103 Ω cm2) | Cf (μF/cm2) | n2 | Rf (105 Ω cm2) | Lss (nm) |
---|---|---|---|---|---|---|---|---|
As-received | 6.32 | 12.1 | 0.82 | 9.71 | 31.7 | 0.92 | 1.23 | 0.44 |
1050 °C, 0.5 h | 5.51 | 10.9 | 0.79 | 8.95 | 32.2 | 0.92 | 1.21 | 0.43 |
1050 °C, 1 h | 6.57 | 12.6 | 0.79 | 9.23 | 42.1 | 0.92 | 1.05 | 0.33 |
1050 °C, 2 h | 6.62 | 10.8 | 0.86 | 8.96 | 39.4 | 0.91 | 0.92 | 0.35 |
1200 °C, 0.5 h | 6.54 | 11.4 | 0.92 | 7.68 | 44.8 | 0.90 | 0.76 | 0.31 |
1200 °C, 1 h | 7.15 | 9.7 | 0.91 | 8.26 | 46.3 | 0.84 | 0.50 | 0.30 |
1200 °C, 2 h | 6.86 | 12.4 | 0.76 | 7.30 | 53.0 | 0.91 | 0.21 | 0.26 |
Table 2 Fitting parameters of EIS results obtained from proposed equivalent model.
Condition | Rs (Ω cm2) | Cdl (μF/cm2) | n1 | Rct (103 Ω cm2) | Cf (μF/cm2) | n2 | Rf (105 Ω cm2) | Lss (nm) |
---|---|---|---|---|---|---|---|---|
As-received | 6.32 | 12.1 | 0.82 | 9.71 | 31.7 | 0.92 | 1.23 | 0.44 |
1050 °C, 0.5 h | 5.51 | 10.9 | 0.79 | 8.95 | 32.2 | 0.92 | 1.21 | 0.43 |
1050 °C, 1 h | 6.57 | 12.6 | 0.79 | 9.23 | 42.1 | 0.92 | 1.05 | 0.33 |
1050 °C, 2 h | 6.62 | 10.8 | 0.86 | 8.96 | 39.4 | 0.91 | 0.92 | 0.35 |
1200 °C, 0.5 h | 6.54 | 11.4 | 0.92 | 7.68 | 44.8 | 0.90 | 0.76 | 0.31 |
1200 °C, 1 h | 7.15 | 9.7 | 0.91 | 8.26 | 46.3 | 0.84 | 0.50 | 0.30 |
1200 °C, 2 h | 6.86 | 12.4 | 0.76 | 7.30 | 53.0 | 0.91 | 0.21 | 0.26 |
Fig. 8. Side and cross-sectional morphologies of SLMed 316 L stainless steel after tensile experiments: (a, d) as-received; (b, e) heat-treated at 1050 °C for 2 h; (c, f) heat-treated at 1200 °C for 2 h.
Fig. 9. EIS data for SLMed 316 L stainless steel specimens after heat treatment in 3.5 wt% NaCl solution at room temperature: (a) Nyquist plots; (b) Bode plots; (c) equivalent circuit. Solid lines represent the fitted results.
Fig. 10. Scanning transmission electron microscopy (STEM) and EDS mapping results of nanoinclusions: (a, c) as-received SLMed 316 L stainless steel; (b, d) SLMed 316 L stainless steel heat-treated at 1200 °C for 2 h.
Fig. 11. (a) Potentiodynamic polarization curves of SLMed 316 L stainless steel after heat treatment in 3.5 wt% NaCl solution at room temperature and corresponding (b) corrosion potential, (c) pitting potential and (d) metastable pitting results.
Fig. 12. Typical pitting morphology for SLMed 316 L stainless steel in a 3.5 wt% NaCl solution after potentiodynamic polarization at room temperature: (a, b) as-received; (c) heat-treated at 1050 °C for 2 h; (d) heat-treated at 1200 °C for 2 h.
|
[1] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[2] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[4] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[10] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[11] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[12] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[13] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[14] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[15] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||