Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 148-156    DOI: 10.1016/j.jmst.2017.11.013
Orginal Article Current Issue | Archive | Adv Search |
Corrosion fatigue behavior of friction stir processed interstitial free steel
Wen Wanga*(), Ruiqi Xua, Yaxin Haoa, Qiang Wanga, Liangliang Yua, Qianying Chea, Jun Caia, Kuaishe Wanga, Zongyi Mab
a School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      

In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in the processed zone (PZ) with a thickness of about 2.5 mm. The yield strength (325 MPa) and ultimate tensile strength (451 MPa) of FSP IF steel were significantly higher than those of base material (BM) (192 and 314 MPa), while the elongation (67.5%) almost remained unchanged compared with the BM (66.2%). The average microhardness value of the PZ was about 130 HV, 1.3 times higher than that of the BM. In addition, the FSP IF steel showed a more positive corrosion potential and lower corrosion current density than the BM, exhibiting lower corrosion tendency and corrosion rates in a 3.5 wt% NaCl solution. Furthermore, FSP IF steel exhibited higher fatigue life than the BM both in air and NaCl solution. Corrosion fatigue fracture surfaces of FSP IF steel mainly exhibited a typical transgranular fracture with fatigue striations, while the BM predominantly presented an intergranular fracture. Enhanced corrosion fatigue performance was mainly attributed to the increased resistance of nucleation and growth of fatigue cracks. The corrosion fatigue mechanism was primarily controlled by anodic dissolution under the combined effect of cyclic stress and corrosive solution.

Key words:  Friction stir processing      Interstitial free steel      Fatigue      Corrosion fatigue      Microstructure     
Received:  29 March 2017     
Corresponding Authors:  Wang Wen     E-mail:

Cite this article: 

Wen Wang, Ruiqi Xu, Yaxin Hao, Qiang Wang, Liangliang Yu, Qianying Che, Jun Cai, Kuaishe Wang, Zongyi Ma. Corrosion fatigue behavior of friction stir processed interstitial free steel. J. Mater. Sci. Technol., 2018, 34(1): 148-156.

URL:     OR

Fig. 1.  Setup of corrosion fatigue.
Fig. 2.  Cross sectional macroscopic appearance of double-sided FSP IF steel.
Fig. 3.  Microstructure of FSP IF steel in different regions: (a) BM (region 1 in Fig. 2), (b) PZ formed by the first pass FSP (region 2 in Fig. 2), (c) PZ formed by the second pass FSP (region 3 in Fig. 2), (d) fine grains of surface layer in the PZ, (e) dislocation of surface layer in the PZ, (f) TMAZ formed by the first pass FSP (region 4 in Fig. 2), and (g) TMAZ formed by the first pass FSP (region 5 in Fig. 2).
Fig. 4.  Contour map of microhardness distribution of FSP IF steel.
Specimens YS (MPa) UTS (MPa) EL (%)
BM specimen 192 ± 2.8 314 ± 3.7 66.2 ± 0.6
FSP specimen 325 ± 3.5 451 ± 3.5 67.5 ± 0.4
Table 1  Tensile properties of IF steel.
Fig. 5.  Typical fracture surfaces of IF steel after tensile testing: (a) BM specimen, and (b) FSP specimen.
Fig. 6.  Log fatigue life vs log stress range curves of the BM and FSP specimens (a) in air and (b) in 3.5 wt% NaCl solution at a stress ratio of R = 0.1 and 10 Hz loading frequency.
Fig. 7.  Typical fracture surfaces of the BM specimen (on the left side) at ΔS = 220 MPa, Nf = 2.144 × 106 and FSP specimen (on the right side) at ΔS = 420 MPa, Nf = 0.936 × 106 in air: (a) (b) crack initiation zone; (c) (d) crack propagation zone at low amplification, and (e) (f) crack propagation zone at high amplification.
Fig. 8.  Fracture surfaces of the BM specimen in crack propagation zone at ΔS = 220 MPa, Nf = 0.689 × 106 in 3.5 wt% NaCl solution.
Fig. 9.  Fracture surfaces of the FSP specimen in crack propagation zone at ΔS = 370 MPa, Nf = 0.397 × 106 in 3.5 wt% NaCl solution: (a) at low amplification, and (b) at high amplification of region A in (a).
Fig. 10.  Surfaces topography of (a) BM fatigue specimen failed at ΔS = 230 MPa, Nf = 0.411 × 106 and (b) FSP fatigue specimen failed at ΔS = 350 MPa, Nf = 0.513 × 106 in 3.5 wt% NaCl solution.
Fig. 11.  Potentiodynamic polarization curves of the BM and FSP specimens in 3.5 wt% NaCl solution.
Specimen Ecorr (mV) icorr (μA/cm2)
BM specimen -557.59 10.64
FSP specimen -458.22 5.64
Table 2  Corrosion potentials and corrosion current densities of the BM and FSP specimens in 3.5 wt% NaCl solution.
Fig. 12.  Nyquist plots of the BM and FSP specimens in 3.5 wt% NaCl solution.
[1] Y. Shadangi, K. Chattopadhyay, S.B. Rai, V. Singh, Surf. Coat. Technol. 280(2015) 216-224.
[2] S. Majumdar, D. Bhattacharjee, K.K. Ray, Scr. Mater. 64(2011) 288-291.
[3] O. Sitdikov, E. Avtokratova, T. Sakai, J. Alloys Compd. 648(2015) 195-204.
[4] S. Sabbaghianrad, T.G. Langdon, Mater. Sci. Eng. A 655 (2016) 36-43.
[5] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
[6] J.Q. Li, H.J. Liu, J. Mater. Sci.Technol. 31(2015) 375-383.
[7] A.H. Ammouri, G. Kridli, G. Ayoub, R.F. Hamade, J. Mater. Process.Technol. 222(2015) 301-306.
[8] C.I. Chang, X.H. Du, J.C. Huang, Scr. Mater. 59(2008) 356-359.
[9] N. Xu, Y. Bao, Mater. Sci. Eng. A 655 (2016) 292-299.
[10] D.R. Ni, J.J. Wang, Z.Y. Ma, J. Mater. Sci.Technol. 32(2016) 162-166.
[11] W. Wang, K.S. Wang, Q. Guo, N. Wu, Rare Metal Mater. Eng. 41(2012)1522-1526.
[12] Q. Yang, A.H. Feng, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 556 (2012) 671-677.
[13] Q. Yang, B.L. Xiao, Z.Y. Ma, J. Alloys Compd. 551(2013) 61-66.
[14] Q. Yang, B.L. Xiao, Z.Y. Ma, R.S. Chen, Scr. Mater. 65(2011) 335-338.
[15] J.A. Del Valle, P. Rey, D. Gesto, D. Verdera, J.A. Jiménez, O.A. Ruano, Mater. Sci.Eng. A 628 (2015) 198-206.
[16] N. Kumar, N. Dendge, R. Banerjee, R.S. Mishra, Mater. Sci. Eng. A 590 (2014)116-131.
[17] C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, J.C. Huang, Mater. Charact. 61(2010)1043-1053.
[18] C.I. Chang, X.H. Du, J.C. Huang, Scr. Mater. 57(2007) 209-212.
[19] S. Cartigueyen, K. Mahadevan, J. Manuf. Processes 18 (2015) 124-130.
[20] A. Chabok, K. Dehghani, Mater. Sci. Eng. A 528 (2010) 309-313.
[21] K. Dehghani, A. Chabok, Mater. Sci. Eng. A 528 (2011) 4325-4330.
[22] A. Chabok, K. Dehghani, J. Mater. Eng.Perform. 22(2013) 1324-1330.
[23] A. Chabok, K. Dehghani, M.A. Jazani, Acta Metall. Sin.(Engl. Lett.) 28(2015)295-301.
[24] D.M. Sekban, O. Saray, S.M. Aktarer, G. Purcek, Z.Y. Ma, Mater. Sci. Eng. A 642(2015) 57-64.
[25] T. Niendorf, F. Rubitschek, H.J. Maier, D. Canadinc, I. Karaman, J. Mater. Sci. 45(2010) 4813-4821.
[26] M.N. James, Eng. Fract. Mech. 77(2010) 1998-2007.
[27] P. Xue, W.D. Li, D. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 670(2016) 153-158.
[28] W.F. Xu, W. Zhang, X.L. Wu, Metall. Mat. Trans. A 48 (2017) 1078-1091.
[29] M. Navaser, M. Atapour, J. Mater. Sci.Technol. 33(2017) 155-165.
[30] G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang, J. Mater. Sci.Technol. 32(2016) 326-332.
[31] C. Zhou, X. Yang, G. Luan, Scr. Mater. 53(2005) 1187-1191.
[32] ASTM, Standard Practice for Statistical Analysis of Linear or LinearizedStress-life (S-N) and Strain-life (_-N) Fatigue Data, 2004, 2004, pp. E739-791(United States).
[33] P. Murkute, J. Ramkumar, K. Mondal, J. Mater. Eng.Perform. 25(2016)2878-2888.
[34] K. Dehghani, M. Hosseini, A. Nekahi, Int. J. Mater. Res. 104(2013) 999-1006.
[35] L.Q. Guo, X.M. Zhao, B.C. Wang, Y. Bai, B.Z. Xu, L.J. Qiao, Corros. Sci. 70(2013)188-193.
[36] W. Wang, T.Q. Li, K.S. Wang, J. Cai, K. Qiao, J. Mater. Eng.Perform. 25(2016)1820-1828.
[37] B. Hadzima, M. Janeˇcek, Y. Estrin, H.S. Kim, Mater. Sci. Eng. A 462 (2007)243-247.
[38] W.B. Shou, D.Q. Yi, H.Q. Liu, C. Tang, F.H. Shen, B. Wang, Arch. Civ. Mech. Eng.16(2016) 304-312.
[39] W. Wang, K. Qiao, J.L. Wu, T.Q. Li, J. Cai, K.S. Wang, Sci. Technol. Weld. Join. 22(2017) 110-119.
[40] P.S. Pao, S.J. Gill, C.R. Feng, K.K. Sankaran, Scr. Mater. 45(2001) 605-612.
[1] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[2] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[3] Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel[J]. 材料科学与技术, 2020, 45(0): 35-43.
[4] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[5] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[6] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[7] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[8] Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. 材料科学与技术, 2020, 41(0): 191-198.
[9] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[10] Chao Wang, Qiang Li, Weiming Zhang, Huiqing Fan. Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics[J]. 材料科学与技术, 2020, 45(0): 15-22.
[11] Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study[J]. 材料科学与技术, 2020, 43(0): 119-125.
[12] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[13] Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. 材料科学与技术, 2020, 44(0): 201-208.
[14] Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels[J]. 材料科学与技术, 2020, 45(0): 1-14.
[15] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.