J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (10): 1134-1140.DOI: 10.1016/j.jmst.2017.05.011
• Orginal Article • Previous Articles Next Articles
Yang Fenfena, Chen Zongningab(), Cao Feia, Fan Rongc, Kang Huijuna, Huang Wanxiad, Yuan Qingxid, Xiao Tiqiaoe, Fu Yanane, Wang Tongmina(
)
Received:
2017-01-18
Revised:
2017-03-14
Accepted:
2017-04-28
Online:
2017-10-25
Published:
2018-01-25
About author:
1 These two authors contributed equally to this paper.
Yang Fenfen, Chen Zongning, Cao Fei, Fan Rong, Kang Huijun, Huang Wanxia, Yuan Qingxi, Xiao Tiqiao, Fu Yanan, Wang Tongmin. Grain nucleation and growth behavior of a Sn-Pb alloy affected by direct current: An in situ investigation[J]. J. Mater. Sci. Technol., 2017, 33(10): 1134-1140.
Fig. 3. Sequences of synchrotron X-ray radiographs showing time evolution of equiaxed growth of the Sn-50 wt.%Pb sample for the four solidification experiments: (a) j = 0 A/mm2; (b) j = 1 A/mm2; (c) j = 1.5 A/mm2; (d) j = 1.8 A/mm2. t = 0 s represents the time when cooling is applied.
Fig. 4. Microstructures of Sn-50 wt.%Pb alloy at the end of solidification (180 °C, t = 3000 s) showing the effect of DC on grain refinement: (a) j = 0 A/mm2; (b) j = 1 A/mm2; (c) j = 1.5 A/mm2; (d) j = 1.8 A/mm2; (e) grain size as a function of DC density.
j (A/mm2) | t (s) | T (°C) | ΔT (°C) |
---|---|---|---|
0 | 1124 | 211 | 4 |
1 | 1211 | 210 | 5 |
1.5 | 1887 | 199 | 16 |
1.8 | 2065 | 196 | 19 |
Table 1 The nucleation time (t), the corresponding temperature (T) and undercooling (ΔT) of the melt when the first grain is visible. t = 0 s represents the time when cooling starts.
j (A/mm2) | t (s) | T (°C) | ΔT (°C) |
---|---|---|---|
0 | 1124 | 211 | 4 |
1 | 1211 | 210 | 5 |
1.5 | 1887 | 199 | 16 |
1.8 | 2065 | 196 | 19 |
Fig. 6. Time variation in the growth rate of the equiaxed dendrites with different DC density for Sn-50 wt.%Pb alloy. t = 0 s represents the time when cooling is applied.
Fig. 7. Synchrotron X-ray radiographs showing the effect of DC on dendrite morphology: (a) Sn-50 wt.%Pb alloy solidifying without DC; (b) Sn-50 wt.%Pb alloy solidifying with DC; (c) Sn-12 wt.%Bi alloy solidifying without DC; (d) Sn-12 wt.%Bi alloy solidifying with DC.
|
[1] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[3] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[6] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[7] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[8] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[9] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[10] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[11] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[12] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[13] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[14] | Min Jung Kim, Gyeol Chan Kang, Sung Hwan Hong, Hae Jin Park, Sang Chul Mun, Gian Song, Ki Buem Kim. Understanding microstructure and mechanical properties of (AlTa0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters [J]. J. Mater. Sci. Technol., 2020, 57(0): 131-137. |
[15] | Huihui Yang, Guanyi Jing, Piao Gao, Zemin Wang, Xiangyou Li. Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718: From single tracks to cuboid samples [J]. J. Mater. Sci. Technol., 2020, 51(0): 137-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||