J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (10): 1027-1032.DOI: 10.1016/j.jmst.2016.06.005
Special Issue: 2016腐蚀与防护专辑
• Orginal Article • Previous Articles Next Articles
Belkin P.N.,Kusmanov S.A.(),Zhirov A.V.,Belkin V.S.,Parfenyuk V.I.
Received:
2015-07-28
Accepted:
2015-10-31
Online:
2016-10-10
Published:
2016-11-05
Contact:
Kusmanov S.A.
Belkin P.N.,Kusmanov S.A.,Zhirov A.V.,Belkin V.S.,Parfenyuk V.I.. Anode Plasma Electrolytic Saturation of Titanium Alloys with Nitrogen and Oxygen[J]. J. Mater. Sci. Technol., 2016, 32(10): 1027-1032.
Fig. 1. Current?voltage characteristics of the heating of the CP-Ti samples (Ф8 mm × 15 mm) in NH4Cl solution. The NH4Cl concentration: 1-5 wt%; 2-10 wt%; 3-15 wt%.
Fig. 2. Temperature?voltage characteristics of the heating of the CP-Ti samples (Ф8 mm × 15 mm) in NH4Cl solution. The NH4Cl concentration: 1-5 wt%; 2-10 wt%; 3-15 wt%.
Fig. 3. Effect of the voltage on the mass loss of the titanium sample (1) and the titanium mass in the solution (2). The NH4Cl concentration is 10 wt%, the samples temperature changes from 700 to 950 °С, the processing time is 30 min.
Fig. 4. Effect of the processing time on the mass loss of the titanium sample (1) and the titanium mass in the solution (2). The NH4Cl concentration is 10 wt%, 1000 °С, 260 V.
Voltage (V) | NH4Cl concentration (g/L) | Time (min) | Mass change (g) |
---|---|---|---|
160 | 100 | 1 | -0.1183 |
210 | 100 | 1 | -0.0199 |
260 | 100 | 1 | +0.0447 |
210 | 50 | 1 | -0.0239 |
210 | 150 | 1 | +0.0285 |
210 | 100 | 0.5 | -0.0197 |
210 | 100 | 2 | -0.0529 |
Table 1 Variations in the sample mass of the treated CP-Ti
Voltage (V) | NH4Cl concentration (g/L) | Time (min) | Mass change (g) |
---|---|---|---|
160 | 100 | 1 | -0.1183 |
210 | 100 | 1 | -0.0199 |
260 | 100 | 1 | +0.0447 |
210 | 50 | 1 | -0.0239 |
210 | 150 | 1 | +0.0285 |
210 | 100 | 0.5 | -0.0197 |
210 | 100 | 2 | -0.0529 |
Fig. 5. Concentration profile of oxygen and nitrogen in the surface layer of the titanium sample (Ф8 mm × 10 mm) after nitriding in a solution of ammonium chloride (10%) and ammonia (5%) at 700 °С for 5 min.
Fig. 7. Optical image of cross-section of Ti?3.5Al?1.2Mn after anode nitriding in a solution of ammonium chloride (10%) and ammonia (5%) at 220 V for 5 min.
Fig. 11. Surface linear profile of layer before treatment (a) and fabricated layer after anode PEN in a solution of ammonium chloride (10%) and ammonia (5%) for 5 min at 700 °C (b), 800 °C (c), and 900 °C (d).
Treatment temperature (°C) | Untreated | 750 | 800 | 850 |
---|---|---|---|---|
Friction coefficient | 0.70 | 0.25 | 0.22 | 0.15 |
Weight loss (mg) | 37.00 | 1.77 | 0.52 | 0.88 |
Table 2 Results of the wear testing of CP-Ti nitrided during 5 min
Treatment temperature (°C) | Untreated | 750 | 800 | 850 |
---|---|---|---|---|
Friction coefficient | 0.70 | 0.25 | 0.22 | 0.15 |
Weight loss (mg) | 37.00 | 1.77 | 0.52 | 0.88 |
Cooling media | Corrosion rate (mm/year) |
---|---|
In electrolyte | 0.0098 |
In air | 0.0099 |
Untreated sample | 0.1380 |
Table 3 Results of testing CP-Ti samples in an aqueous solution of hydrochloric acid (6%) with addition of protein-vitamin concentrate (20%) at 20 cycles
Cooling media | Corrosion rate (mm/year) |
---|---|
In electrolyte | 0.0098 |
In air | 0.0099 |
Untreated sample | 0.1380 |
Samples | CP-Ti | Ti?3.5Al?1.2Mn | Ti?3.6Al?1.2V | Ti?3Al?2.2Zr |
---|---|---|---|---|
Untreated | 0.449 (0.720) | 0.493 (0.796) | 0.456 (0.789) | 0.385 (0.621) |
Nitrided followed by cooling in air | 0.001 (0.040) | 0.001 (0.005) | 0.002 (0.005) | 0.002 |
Nitrided followed by cooling in solution | 0.008 (0.002) | 0.002 (0.002) | 0.004 (0.004) | 0.003 |
Table 4 Corrosion rate (mm/year) of the titanium alloys (50 mm × 20 mm × 3 mm) at the testing temperature of 20 °C and 50 °C (in brackets). The testing media are a solution of sulfuric (4.5 wt%) and hydrochloric (0.2 wt%) acids
Samples | CP-Ti | Ti?3.5Al?1.2Mn | Ti?3.6Al?1.2V | Ti?3Al?2.2Zr |
---|---|---|---|---|
Untreated | 0.449 (0.720) | 0.493 (0.796) | 0.456 (0.789) | 0.385 (0.621) |
Nitrided followed by cooling in air | 0.001 (0.040) | 0.001 (0.005) | 0.002 (0.005) | 0.002 |
Nitrided followed by cooling in solution | 0.008 (0.002) | 0.002 (0.002) | 0.004 (0.004) | 0.003 |
|
[1] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[2] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[3] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[4] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[5] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[6] | Xianlong Wang, Jinchuan Jie, Shichao Liu, Zhuangzhuang Dong, Guomao Yin, Tingju Li. Growth mechanism of primary Ti5Si3 phases in special brasses and their effect on wear resistance [J]. J. Mater. Sci. Technol., 2021, 61(0): 138-146. |
[7] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[8] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[9] | Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides [J]. J. Mater. Sci. Technol., 2020, 37(0): 104-113. |
[10] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[11] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[12] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
[13] | C.Q. Li, D.K. Xu, Z.R. Zhang, E.H. Han. Influence of the lithium content on the negative difference effect of Mg-Li alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 138-145. |
[14] | Jufeng Huang, Guang-Ling Song, Andrej Atrens, Matthew Dargusch. What activates the Mg surface—A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57(0): 204-220. |
[15] | Zhongwei Wang, Yu Yan, Yang Wang, Yanjing Su, Lijie Qiao. Lifecycle of cobalt-based alloy for artificial joints: From bulk material to nanoparticles and ions due to bio-tribocorrosion [J]. J. Mater. Sci. Technol., 2020, 46(0): 98-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||