J. Mater. Sci. Technol. ›› 2023, Vol. 155: 142-147.DOI: 10.1016/j.jmst.2022.12.076
Previous Articles Next Articles
Sri Kasi Mattaa,b,1,*, Ting Liaoc,*, Salvy P Russob,*
Received:
2022-11-23
Revised:
2022-12-24
Accepted:
2022-12-26
Published:
2023-08-20
Online:
2023-03-11
Contact:
*E-mail addresses: About author:
1JSPS International Research Fellow
Sri Kasi Matta, Ting Liao, Salvy P Russo. New Janus structure photocatalyst having widely tunable electronic and optical properties with strain engineering[J]. J. Mater. Sci. Technol., 2023, 155: 142-147.
[1] N. Armaroli, V. Balzani, ChemSusChem 4 (2010) 21-36. [2] Y. Jiao, L. Zhou, F. Ma, G. Gao, L. Kou, J. Bell, S. Sanvito, A. Du, ACS Appl. Mater. Interfaces 8 (2016) 5385-5392. [3] A. Fujishima, K. Honda, Nature 238 (1972) 37-38. [4] H.L. Zhuang, R.G. Hennig, Chem. Mater. 25(2013) 3232-3238. [5] H.L. Zhuang, R.G. Hennig, J. Phys. Chem. C 117 (2013) 20440-20445. [6] J. Liu, X.-.B. Li, D. Wang, W.-.M. Lau, P. Peng, L.-.M. Liu, J. Chem. Phys. 140 (2014) 054707/1-054707/7. [7] X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110(2010) 6503-6570. [8] A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(2009) 253-278. [9] M.-.C. Wu, J. Hiltunen, A. Sápi, A. Avila, W. Larsson, H.-.C. Liao, M. Huuhta- nen, G. Tóth, A. Shchukarev, N. Laufer, Á. Kukovecz, Z. Kónya, J.-.P. Mikkola, R. Keiski, W.-.F. Su, Y.-.F. Chen, H. Jantunen, P.M. Ajayan, R. Vajtai, K. Kordás, ACS Nano 5 (2011) 5025-5030. [10] X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331 (2011) 746-750. [11] Y. Selmani, H. Labrim, S. Ziti, L. Bahmad, Computational Condensed Matter 32 (2022) e00699. [12] A. Ait Raiss, Y. Sbai, L. Bahmad, A. Benyoussef, J. Magn. Magn.Mater. 385(2015) 295-301. [13] S. Idrissi, L. Bahmad, A. Benyoussef, Phase Trans. 95(2022) 501-514. [14] Y. Yan, J. Chen, N. Li, J. Tian, K. Li, J. Jiang, J. Liu, Q. Tian, P. Chen, ACS Nano 12 (2018) 3523-3532. [15] Q. Yuan, D. Liu, N. Zhang, W. Ye, H. Ju, L. Shi, R. Long, J. Zhu, Y. Xiong, Angew. Chem., Int. Ed. 56(2017) 4206-4210. [16] M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Angew. Chem., Int. Ed. 57(2018) 2160-2164. [17] A. Singh, M. Jain, S. Bhattacharya, Nanoscale Adv. 3(2021) 2837-2845. [18] J. Barber, P.D. Tran, J. Roy. Soc. Interface 10 (2013) 20120984. [19] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10(2011) 456-461. [20] L. Dong, J. Lou, V.B. Shenoy, ACS Nano 11 (2017) 8242-8248. [21] X. Ma, X. Wu, H. Wang, Y. Wang, J. Mater. Chem. A 6 (2018) 2295-2301. [22] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, J. Lou, ACS Nano 11 (2017) 8192-8198. [23] C.-.F. Fu, J.Sun, Q. Luo, X. Li, W. Hu, J. Yang, Nano Lett. 18(2018) 6312-6317. [24] S. Cobo, J. Heidkamp, P.-.A. Jacques, J.Fize, V. Fourmond, L. Guetaz, B. Jous- selme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11(2012) 802-807. [25] A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, ACS Appl. Mater. Interfaces 9 (2017) 2240-2248. [26] L. Ju, M. Bie, X. Tang, J. Shang, L. Kou, ACS Appl. Mater. Interfaces 12 (2020) 29335-29343. [27] Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, Y. Li, ACS Catal. 5(2015) 2213-2219. [28] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem.Soc. 127(2005) 5308-5309. [29] T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (2007) 100-102. [30] M.A. Lukowski, A.S. Daniel, F.Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 135(2013) 10274-10277. [31] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13(2013) 6222-6227. [32] Y. Guo, S. Zhou, Y. Bai, J. Zhao, Appl. Phys. Lett. 110 (2017) 163102/1-163102/5. [33] S.K. Matta, C. Zhang, Y. Jiao, A. O'Mullane, A. Du, Nanoscale 10 (2018) 6369-6374. [34] T. Yu, C. Wang, X. Yan, G. Yang, U. Schwingenschlögl, J. Phys. Chem.Lett. 12(2021) 2464-2470. [35] Y. Jiao, F. Ma, G. Gao, J. Bell, T. Frauenheim, A. Du, J. Phys. Chem.Lett. 6(2015) 26 82-26 87. [36] R.N. Somaiya, D. Singh, Y. Sonvane, S.K. Gupta, R. Ahuja, Catal. Sci. Technol. 11(2021) 4996-5013. [37] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [38] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192. [39] A. Togo, I. Tanaka, Scr. Mater. 108(2015) 1-5. [40] H.C. Andersen, J. Chem. Phys. 72(1980) 2384-2393. [41] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979. [42] S. Grimme, J. Comput. Chem. 27(2006) 1787-1799. [43] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(2010) 154104. [44] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(2003) 8207-8215. [45] A.A. Mostofi, J.R. Yates, Y.-.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 178(2008) 685-699. [46] L. Hedin, Phys. Rev. 139(1965) A796-A823. [47] E.E. Salpeter, H.A. Bethe, Phys. Rev. 84(1951) 1232-1242. [48] A.-Y. Lu, H.Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.-Y. Chou, X. Zhang, L.-J. Li, Nat. Nanotechnol. 12(2017) 744-749. [49] C. Zhang, Y. Nie, S. Sanvito, A. Du, Nano Lett. 19(2019) 1366-1370. [50] Y.-.Q. Liu, D.-.D. Han, Z.-.Z. Jiao, Y. Liu, H.-.B. Jiang, X.-.H. Wu, H. Ding, Y.-.L. Zhang, H.-.B. Sun, Nanoscale 9 (2017) 17933-17938. [51] R.R. Pela, M. Marques, L.K. Teles, J. Phys.: Conden. Matter 27 (2015) 505502. [52] S.A. Razek, M.R. Popeil, L. Wangoh, J. Rana, N. Suwandaratne, J.L. Andrews, D. F. Watson, S. Banerjee, L.F.J.Piper, Electron. Struct. 2(2020) 023001. [53] T. Wadsten, M. Vikan, C. Krohn, Å. Nilsson, H. Theorell, R. Blinc, S. Paušak, L. Ehrenberg, J. Dumanovi ć, Acta Chem. Scand. 21(1967) 593-594. [54] A.J. Springthorpe, Mater. Res. Bull. 4(1969) 125-128. [55] M. Zhou, W. Duan, Y. Chen, A. Du, Nanoscale 7 (2015) 15168-15174. [56] S. Feng, F. Guo, C. Yuan, Z. Wang, F. Miao, H. Zhang, Mater. Adv. 3(2022) 9063-9070. |
[1] | Ji-Chang Ren, Junjun Zhou, Christopher J. Butch, Zhigang Ding, Shuang Li, Yonghao Zhao, Wei Liu. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model [J]. J. Mater. Sci. Technol., 2023, 138(0): 70-79. |
[2] | Xingpu Zhang, Zhongkang Han, Liangliang Xu, Haohan Ni, Xiaojuan Hu, Haofei Zhou, Yu Zou, Jiangwei Wang. Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu (-Ag) alloys [J]. J. Mater. Sci. Technol., 2023, 138(0): 157-170. |
[3] | Atul C. Khot, Tukaram D. Dongale, Kiran A. Nirmal, Jayan K. Deepthi, Santosh S. Sutar, Tae Geun Kim. 2D Ti3C2Tx MXene-derived self-assembled 3D TiO2nanoflowers for nonvolatile memory and synaptic learning applications [J]. J. Mater. Sci. Technol., 2023, 150(0): 1-10. |
[4] | Shengzhe Wang, Lei Ma, Rui Wang, Chengyu Jin, Ying Zhao, Xuefei Tan, Yanan Zhang, Mengyang Liu, Chenxing Yao, Huangzhao Wei, Chenglin Sun. Fe3C@C/C for catalytic ozonation of silicon-containing wastewater: Dual improvement of silicon resistance and catalytic effect [J]. J. Mater. Sci. Technol., 2023, 136(0): 65-77. |
[5] | Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoSx microsheets in 2D/1D MoSx/MnWO4 S-scheme heterojunction for visible-light photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 136(0): 169-179. |
[6] | J.F. Zhao, H.P. Wang, B. Wei. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100(0): 246-253. |
[7] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[8] | Chunmei Li, Jinyong Wang, Dongyang Li, Nasir Ilyas, Zhiqiang Yang, Kexin Chen, Peng Gu, Xiangdong Jiang, Deen Gu, Fucai Liu, Yadong Jiang, Wei Li. An oxide-based heterojunction optoelectronic synaptic device with wideband and rapid response performance [J]. J. Mater. Sci. Technol., 2022, 123(0): 159-167. |
[9] | Jiakang Tian, Yongqing Shen, Peizhi Liu, Haixia Zhang, Bingshe Xu, Yanhui Song, Jianguo Liang, Junjie Guo. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 127(0): 1-18. |
[10] | Shuaishuai Gao, Zuju Ma, Chengwei Xiao, Zhitao Cui, Wei Du, Xueqin Sun, Qiaohong Li, Rongjian Sa, Chenghua Sun. TM3 (TM = V, Fe, Mo, W) single-cluster catalyst confined on porous BN for electrocatalytic nitrogen reduction [J]. J. Mater. Sci. Technol., 2022, 108(0): 46-53. |
[11] | Chuangwei Liu, Tianyi Wang, Derek Hao, Qinye Li, Song Li, Chenghua Sun. Catalytic reduction of carbon dioxide over two-dimensional boron monolayer [J]. J. Mater. Sci. Technol., 2022, 110(0): 96-102. |
[12] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[13] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
[14] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[15] | Chunwei Dong, Hongyu Zhou, Hui Liu, Bo Jin, Zi Wen, Xingyou Lang, Jianchen Li, Jaekwang Kim, Qing Jiang. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 113(0): 207-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||