J. Mater. Sci. Technol. ›› 2023, Vol. 135: 231-240.DOI: 10.1016/j.jmst.2022.06.049
• Research Article • Previous Articles Next Articles
Ying Zhanga,1, Yuxuan Houa,1, He Zhenga,b,c,*, Ligong Zhaoa, Shuangfeng Jiaa, Kaixuan Lia, Huayu Penga, Peili Zhaoa, Lei Lia, Weiwei Menga, Renhui Jianga, Jianbo Wanga,*
Received:
2022-04-27
Revised:
2022-06-07
Accepted:
2022-06-10
Published:
2023-02-01
Online:
2022-08-10
Contact:
*E-mail addresses: zhenghe@whu.edu.cn (H. Zheng), wang@whu.edu.cn (J. Wang)
About author:
1 These authors contributed equally to this work.
Ying Zhang, Yuxuan Hou, He Zheng, Ligong Zhao, Shuangfeng Jia, Kaixuan Li, Huayu Peng, Peili Zhao, Lei Li, Weiwei Meng, Renhui Jiang, Jianbo Wang. Effects of twin orientation and twin boundary spacing on the plastic deformation behaviors in Ni nanowires[J]. J. Mater. Sci. Technol., 2023, 135: 231-240.
[1] X.Y. Li, Y.J. Wei, L. Lu, K. Lu, H.J. Gao, Nature 464 (2010) 877-880. [2] Q.J.L.Fang, F. Sansoz, Acta Mater. 212 (2021) 116925-116937. [3] S.H. Kim, H.K. Kim, J.H. Seo, D.M. Whang, J.P. Ahn, J.C. Lee, Acta Mater. 160 (2018) 14-21. [4] Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, S.N. Mathaudhu, Acta Mater. 59 (2011) 812-821. [5] M.K. Kini, G. Dehm, C. Kirchlechner, Acta Mater. 184 (2020) 120-131. [6] L.H. Wang, P.F. Guan, J. Teng, P. Liu, D.K. Chen, W.Y. Xie, D.L. Kong, S.B. Zhang, T. Zhu, Z. Zhang, E. Ma, M.W. Chen, X.D. Han, Nat. Commun. 8 (2017) 2142. [7] H. Zheng, Y. Liu, S.X. Mao, J.B. Wang, J.Y. Huang, Sci. Rep. 2 (2012) 542. [8] H. Idrissi, B.J. Wang, M.S. Colla, J.P. Raskin, D. Schryvers, T. Pardoen, Adv. Mater. 23 (2011) 2119-2122. [9] F.H. Duan, Y. Lin, J. Pan, L. Zhao, Q. Guo, D. Zhang, Y. Li, Sci. Adv. 7 (2021) 5113-5121. [10] J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Acta Mater. 58 (2010) 2262-2270. [11] I.J. Beyerlein, X.H. Zhang, A. Misra, Annu. Rev. Mater. Res. 44 (2014) 329-363. [12] X. Ke, J.C. Ye, Z.L. Pan, J. Geng, M.F. Besser, D.X. Qu, A. Caro, J. Marian, R.T. Ott, Y. M. Wang, F. Sansoz, Nat. Mater. 18 (2019) 1207-1214. [13] L. Lu, X. Chen, X. Huang, K. Lu, Science 323 (2009) 607-610. [14] N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, J.P. Hirth, Acta Mater. 59 (2011) 5989-5996. [15] J.P. Sun, J. Han, Z.Q. Yang, H. Liu, D. Song, A.B. Ma, L. Fang, Nanomaterials 8 (2018) 848-865. [16] F. Zhang, J.Q. Zhou, J. Appl. Phys. 120 (2016) 044303. [17] K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352. [18] J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296. [19] H. Zheng, J.B. Wang, J.Y. Huang, A. Cao, S.X. Mao, Phys. Rev. Lett. 109 (2012) 225501. [20] H.P. Sheng, H. Zheng, S.F. Jia, L. Li, F. Cao, S.J. Wu, W. Han, H.H. Liu, D.S. Zhao, J.B. Wang, J. Appl. Crystallogr. 49 (2016) 462-467. [21] S.W. Lee, M.Y. Huh, E. Fleury, J.C. Lee, Acta Mater. 54 (2006) 349-355. [22] L. Li, G.X.J.Chen, H. Zheng, W.W. Meng, S.F. Jia, L.G. Zhao, P.L. Zhao, Y. Zhang, S.S. Huang, T.L. Huang, J.B. Wang, Nat. Commun. 12 (2021) 3863. [23] P.L. Zhao, X.X. Guan, H. Zheng, S.F. Jia, L. Li, H.H. Liu, L.G. Zhao, H.P. Sheng, W.W. Meng, Y.L. Zhuang, J.B. Wu, L.Y. Li, J.B. Wang, Phys. Rev. Lett. 123 (2019) 216101. [24] H.P. Sheng, H. Zheng, F. Cao, S.J. Wu, L. Li, C. Liu, D.S. Zhao, J.B. Wang, Nano Res. 8 (2015) 3687-3693. [25] Z.S. You, X.Y. Li, L.J. Gui, Q.H. Lu, T. Zhu, H.J. Gao, L. Lu, Acta Mater. 61 (2013) 217-227. [26] R.T. Ott, J. Geng, M.F. Besser, M.J. Kramer, Y.M. Wang, E.S. Park, R. LeSar, A.H. King, Acta Mater. 96 (2015) 378-389. [27] D.C. Jang, X.Y. Li, H.J. Gao, J.R. Greer, Nat. Nanotechnol. 7 (2012) 594-601. [28] J.W. Wang, F. Sansoz, J.Y. Huang, Y. Liu, S.H. Sun, Z. Zhang, S.X. Mao, Nat. Com- mun. 4 (2013) 1742. [29] Y.H. Yue, Q. Zhang, X.J. Zhang, Z.Y. Yang, P.G. Yin, L. Guo, Small 13 (2017) 1604296. [30] Z.Y. Yang, L.L. Zheng, Y.H. Yue, Z.X. Lu, Sci. Rep. 7 (2017) 10056. [31] C. Deng, F. Sansoz, Appl. Phys. Lett. 95 (2009) 091914. [32] X. Guo, Y.Z. Xia, Acta Mater. 59 (2011) 2350-2357. [33] H.Y. Song, Y. Sun, Comput. Mater. Sci. 104 (2015) 46-51. [34] X. Zhao, C. Lu, A.K. Tieu, L.H. Zhan, M.H. Huang, L.H. Su, L.Q. Pei, L. Zhang, Comput. Mater. Sci. 142 (2018) 59-71. [35] A.J. Cao, Y.G. Wei, S.X. Mao, Appl. Phys. Lett. 90 (2007) 151909. [36] G.M. Cheng, S. Yin, T.H. Chang, G. Richter, H.J. Gao, Y. Zhu, Phys. Rev. Lett. 119 (2017) 256101. [37] H.P. Sheng, H. Zheng, S.F. Jia, M.K.Y. Chan, T. Rajh, J.B. Wang, J.G. Wen, Nanoscale 11 (2019) 10756-10762. [38] H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J.B. Wang, Y.Y. Ma, Y.N. Xia, S. X. Mao, Nat. Commun. 1 (2010) 144. [39] J.W. Wang, G. Cao, Z. Zhang, F. Sansoz, Nanoscale 11 (2019) 12672-12679. [40] Y.B. Wang, M.L. Sui, Appl. Phys. Lett. 94 (2009) 021909. [41] A. Howie, P.R. Swann, Philos. Mag. 6 (1961) 1215-1226. [42] L.H. Wang, P. Liu, P.F. Guan, M.J. Yang, J.L. Sun, Y.Q. Cheng, A. Hirata, Z. Zhang, E. Ma, M.W. Chen, X.D. Han, Nat. Commun. 4 (2013) 2413. [43] J.Y. Huang, Y.K. Wu, H.Q. Ye, Acta Mater. 44 (1996) 1211-1221. [44] X. Wu, Y.T. Zhu, M.W. Chen, E. Ma, Scr. Mater. 54 (2006) 1685-1690. [45] S.H. Kim, J.H. Park, H.K. Kim, J.P. Ahn, D.M. Whang, J.C. Lee, Acta Mater. 196 (2020) 69-77. [46] Q. Ding, H. Bei, X. Wei, Y.F. Gao, Z. Zhang, Mater. Today Nano 14 (2021) 100110. [47] J.W. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, Nat. Mater. 14 (2015) 594-600. [48] H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, M.W. Chen, Phys. Rev. B 83 (2011) 134118. [49] A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2010) 015012. [50] A. Stukowski, K. Albe, Model. Simul. Mater. Sci. Eng. 18 (2010) 085001. [51] A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20 (2012) 085007. [52] D. Faken, H. Jónsson, Comput. Mater. Sci. 2 (1994) 279-286. [53] P. Hirel, Comput. Phys. Commun. 197 (2015) 212-219. [54] H.F. Zhou, X.Y. Li, S.X. Qu, W. Yang, H.J. Gao, Nano Lett. 14 (2014) 5075-5080. [55] W.G. Hoover, Phys. Rev. A 31 (1985) 1695-1697. [56] L.H. Wang, D.L. Kong, Y. Zhang, L.R. Xiao, Y. Lu, Z.G. Chen, Z. Zhang, J. Zou, T. Zhu, X.D. Han, ACS Nano 11 (2017) 12500-12508. [57] V. Vítek, Phys. Status Solidi B 18 (1966) 687-701. [58] V. Vítek, Philos. Mag. 18 (1968) 773-786. [59] J.A. Zimmerman, H.J. Gao, F.F. Abraham, Model. Simul. Mater. Sci. Eng. 8 (1999) 103-115. [60] T. Ezaz, H. Sehitoglu, H.J. Maier, Acta Mater. 59 (2011) 5893-5904. [61] H.V. Swygenhoven, P.M. Derlet, A.G. Froseth, Nat. Mater. 3 (2004) 399-403. [62] Q.S. Pan, Q.H. Lu, L. Lu, Acta Mater. 61 (2013) 1383-1393. [63] D. Bufford, H. Wang, X. Zhang, Acta Mater. 59 (2011) 93-101. [64] J.W. Wang, S. Narayanan, J.Y. Huang, Z. Zhang, T. Zhu, S.X. Mao, Nat. Commun. 4 (2013) 2340. [65] E. Martinez, B.P. Uberuaga, Sci. Rep. 5 (2015) 9084. [66] Y.T. Zhu, J. Narayan, J.P. Hirth, S. Mahajan, X.L. Wu, X.Z. Liao, Acta Mater. 57 (2009) 3763-3770. [67] Q. Zhu, L.Y. Kong, H.M. Lu, Q.S. Huang, Y.B. Chen, Y. Liu, W. Yang, Z. Zhang, F. Sansoz, H.F. Zhou, J.W. Wang, Sci. Adv. 7 (2021) 4758. [68] C. Deng, F. Sansoz, Scr. Mater. 63 (2010) 50-53. [69] L.H. Wang, Y. Lu, D.L. Kong, L.R. Xiao, X.C. Sha, J.L. Sun, Z. Zhang, X.D. Han, Acta Mater. 90 (2015) 194-203. [70] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Acta Mater. 51 (2003) 5159-5172. [71] D. Huang, Q. Zhang, P.Z. Qiao, Comput. Mater. Sci. 50 (2011) 903-910. [72] Y.H. Wen, Z.Z. Zhu, R.Z. Zhu, Comput. Mater. Sci. 41 (2008) 553-560. [73] S.B. Fisher, Radiat. Eff. Defects Solids 5 (2006) 239-243. [74] H. Zheng, Y. Liu, F. Cao, S.J. Wu, S.F. Jia, A.J. Cao, D.S. Zhao, J.B. Wang, Sci. Rep. 3 (2013) 1920. [75] N.T.H.Trung, H.S.M.Phuong, M.D. Starostenkov, V.V. Romanenko, V.A. Popov, IOP Conf. Ser. Mater. Sci. Eng. 447 (2018) 012004. |
[1] | Wei Wang, Yanke Liu, Zihan Zhang, Muxin Yang, Lingling Zhou, Jing Wang, Ping Jiang, Fuping Yuan, Xiaolei Wu. Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation [J]. J. Mater. Sci. Technol., 2023, 132(0): 110-118. |
[2] | Chaoyue Chen, Yingchun Xie, Shuo Yin, Wenya Li, Xiaotao Luo, Xinliang Xie, Ruixin Zhao, Chunming Deng, Jiang Wang, Hanlin Liao, Min Liu, Zhongming Ren. Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 134(0): 234-243. |
[3] | Wei Fu, Pengfei Dang, Shengwu Guo, Zijun Ren, Daqing Fang, Xiangdong Ding, Jun Sun. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy [J]. J. Mater. Sci. Technol., 2023, 134(0): 67-80. |
[4] | Xiaocan Wen, Hailong Huang, Honghui Wu, Meisa Zhou, Yeqiang Bu, Xiaoyuan Yuan, Suihe Jiang, Hui Wang, Xiongjun Liu, Hongtao Wang, Jiabin Liu, Yuan Wu, Zhaoping Lu. Enhanced plastic deformation capacity in hexagonal-close-packed medium entropy alloys via facilitating cross slip [J]. J. Mater. Sci. Technol., 2023, 134(0): 1-10. |
[5] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[6] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
[7] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
[8] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[9] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[10] | Shaoyu Zhao, Yingyan Zhang, Jie Yang, Sritawat Kitipornchai. Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2022, 120(0): 196-204. |
[11] | J. Guo, Q.Y. He, Q.S. Mei, X. Huang, G.L. Wu, O.V. Mishin. Gradient microstructure, recrystallization and mechanical properties of copper processed by high pressure surface rolling [J]. J. Mater. Sci. Technol., 2022, 126(0): 182-190. |
[12] | Zhen Chen, Hongbo Xie, Haile Yan, Xueyong Pang, Yuhui Wang, Guilin Wu, Lijun Zhang, HuTang, Bo Gao, Bo Yang, Yanzhong Tian, Huiyang Gou, Gaowu Qin. Towards ultrastrong and ductile medium-entropy alloy through dual-phase ultrafine-grained architecture [J]. J. Mater. Sci. Technol., 2022, 126(0): 228-236. |
[13] | Jianying Wang, Jianpeng Zou, Hailin Yang, Lijun Zhang, Zhilin Liu, Xixi Dong, Shouxun Ji. Exceptional strength-ductility synergy of additively manufactured CoCrNi medium-entropy alloy achieved by lattice defects in heterogeneous microstructures [J]. J. Mater. Sci. Technol., 2022, 127(0): 61-70. |
[14] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[15] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||