J. Mater. Sci. Technol. ›› 2023, Vol. 134: 81-88.DOI: 10.1016/j.jmst.2022.06.034
• Research Article • Previous Articles Next Articles
Xianghui Feng, Nan Li, Baiyi Chen, Chao Zeng, Tianyu Bai, Kai Wu, Yonghong Cheng, Bing Xiao()
Received:
2022-05-08
Revised:
2022-06-19
Accepted:
2022-06-29
Published:
2023-01-20
Online:
2023-01-10
Contact:
Bing Xiao
About author:
* E-mail address: bingxiao84@xjtu.edu.cn (B. Xiao).Xianghui Feng, Nan Li, Baiyi Chen, Chao Zeng, Tianyu Bai, Kai Wu, Yonghong Cheng, Bing Xiao. Thermodynamics for the non-conventional synthesizing of out-of-plane ordered double-transition metal “312” and “413” MAX phases (o-MAX): A high throughput linear programing first-principles calculation[J]. J. Mater. Sci. Technol., 2023, 134: 81-88.
Fig. 1. Investigated M'2M"AlC2 and M'2M"2AlC3 out-of-plane ordered double-transition metal MAX structures. M' represents the outermost transition metal, and M" represents the transition metal occupying the inner atomic layers, and which is usually referred to strong rock-salt type carbide forming element.
Fig. 2. Calculated formation enthalpy (ΔHcp)at 0 K, and formation Gibbs free energy (ΔGcp) at 1700 K for (a) M'2M"AlC2 and (b) M'2M"2AlC3 o-MAX phases. The grey area represents $0\le \text{ }\!\!\Delta\!\!\text{ }{{H}_{\text{cp}}}\left( \text{ }\!\!\Delta\!\!\text{ }{{G}_{\text{cp}}} \right)\le 15\text{meV}/\text{atom}$, referring to meta-stable state for o-MAX phase. The symbol “+” represents the experimentally known o-MAX phases.
Fig. 3. Correlation between the electronic density of states (DOS) at Fermi level (EF) and the formation Gibbs free energy ΔGcp at 1700 K for (a) M'2M"AlC2 and (b) M'2M"2AlC3. The blue triangles denote the experimentally known o-MAX structures. The red dots refer to theoretically predicted ordered double-transition metal o-MAX phases.
Target | Starting ratio | Predicted impurities (0 K) | Predicted impurities (1700 K) |
---|---|---|---|
Mo2ScAlC2 | 2:1:1:2 | (Mo2/3Sc1/3)2AlC, Mo2C, C | Mo2C, (Mo2/3Sc1/3)2AlC, Sc4C3, C |
2:0.74:0.9:2 | (Mo2/3Sc1/3)2AlC, Mo2C, C | Mo2C, Mo3Al2C, Al8Mo3, C | |
Mo2TiAlC2 | 2:1:1:2 | Mo2Ti2AlC3, AlMo3, C | Mo2Ti2AlC3, Mo2C, Al8Mo3, C |
2.2:0.8:1:2 | AlMo3, C | Mo2C, C, Al8Mo3 | |
Mo2Ti2AlC3 | 2:2:1:3 | Mo2TiAlC2, TiC | Mo2TiAlC2, TiC |
1.8:1.2:1:2 | Mo2TiAlC2, Al8Mo3, AlMo3 | Mo2TiAlC2, Al8Mo3, AlMo3 | |
1.5:1.5:1:2 | TiC, AlMo3, Al8Mo3 | Ti2AlC, AlMo3, Al8Mo3 | |
2:2:1:2.7 | TiC, AlMo3, Al8Mo3 | TiC, Ti3AlC2, AlMo3 | |
Cr2TiAlC2 | 2:1:1:2 | Cr2AlC, TiC | Cr2AlC, TiC |
1.5:0.5:1:0.95 | Cr2AlC, TiC, Al3Cr, AlCr2 | AlCr2, TiC, Al | |
1.5:1.5:1:1.9 | Cr2AlC, TiC, Al3Cr, AlCr2 | AlCr2, TiC, Al | |
2:1:1:1.9 | Cr2AlC, TiC, AlCr2 | AlCr2, TiC, | |
Cr2VAlC2 | 2:1:1:2 | Cr2AlC, V6C5, C | Cr3C2, Cr2V2AlC3, C, (Cr0.9V0.1)2AlC |
1.5:1.5:1:2 | (Cr0.9V0.1)2AlC, Al4C3, V6C5 | Cr2V2AlC3, (Cr0.5V0.5)2AlC | |
Cr2V2AlC3 | 2:2:1:3 | Cr2AlC, V6C5, C | Cr2VAlC2, V6C5, C |
Table 1. Predicted most competing impurities of the experimentally known o-MAX phases, using different starting molar ratios of elemental powders as reactants.
Target | Starting ratio | Predicted impurities (0 K) | Predicted impurities (1700 K) |
---|---|---|---|
Mo2ScAlC2 | 2:1:1:2 | (Mo2/3Sc1/3)2AlC, Mo2C, C | Mo2C, (Mo2/3Sc1/3)2AlC, Sc4C3, C |
2:0.74:0.9:2 | (Mo2/3Sc1/3)2AlC, Mo2C, C | Mo2C, Mo3Al2C, Al8Mo3, C | |
Mo2TiAlC2 | 2:1:1:2 | Mo2Ti2AlC3, AlMo3, C | Mo2Ti2AlC3, Mo2C, Al8Mo3, C |
2.2:0.8:1:2 | AlMo3, C | Mo2C, C, Al8Mo3 | |
Mo2Ti2AlC3 | 2:2:1:3 | Mo2TiAlC2, TiC | Mo2TiAlC2, TiC |
1.8:1.2:1:2 | Mo2TiAlC2, Al8Mo3, AlMo3 | Mo2TiAlC2, Al8Mo3, AlMo3 | |
1.5:1.5:1:2 | TiC, AlMo3, Al8Mo3 | Ti2AlC, AlMo3, Al8Mo3 | |
2:2:1:2.7 | TiC, AlMo3, Al8Mo3 | TiC, Ti3AlC2, AlMo3 | |
Cr2TiAlC2 | 2:1:1:2 | Cr2AlC, TiC | Cr2AlC, TiC |
1.5:0.5:1:0.95 | Cr2AlC, TiC, Al3Cr, AlCr2 | AlCr2, TiC, Al | |
1.5:1.5:1:1.9 | Cr2AlC, TiC, Al3Cr, AlCr2 | AlCr2, TiC, Al | |
2:1:1:1.9 | Cr2AlC, TiC, AlCr2 | AlCr2, TiC, | |
Cr2VAlC2 | 2:1:1:2 | Cr2AlC, V6C5, C | Cr3C2, Cr2V2AlC3, C, (Cr0.9V0.1)2AlC |
1.5:1.5:1:2 | (Cr0.9V0.1)2AlC, Al4C3, V6C5 | Cr2V2AlC3, (Cr0.5V0.5)2AlC | |
Cr2V2AlC3 | 2:2:1:3 | Cr2AlC, V6C5, C | Cr2VAlC2, V6C5, C |
M' | M" | Synthetic routes |
---|---|---|
M'2M"AlC2 | ||
Cr | Ti V Nb Ta | M'2AlC+M"C=M'2M"AlC2 |
Nb | Hf Ta | M'2AlC+M"C=M'2M"AlC2 |
Mo | Ti V Zr Nb Hf Ta | M'2C+Al+M"C=M'2M"AlC2 |
Mo | Sc | Mo2C+Al+Sc+C=Mo2ScAlC2 |
W | Ti Zr Hf | M'+Al+M'C+ M"C=M'2M"AlC2 |
M'2M"2AlC3 | ||
Cr | Ti V Ta | M'2AlC+2M"C=M'2M"2AlC3 |
Nb | Hf Ta | M'2AlC+2M"C=M'2M"2AlC3 |
Mo | Ti V Ta | M'2C+Al+2M"C= M'2M"2AlC3 |
W | Ti | W+Al+WC+2TiC=W2Ti2AlC3 |
Table 2. Optimal synthetic routes for “312” and “413” double-transition metal o-MAX phases.
M' | M" | Synthetic routes |
---|---|---|
M'2M"AlC2 | ||
Cr | Ti V Nb Ta | M'2AlC+M"C=M'2M"AlC2 |
Nb | Hf Ta | M'2AlC+M"C=M'2M"AlC2 |
Mo | Ti V Zr Nb Hf Ta | M'2C+Al+M"C=M'2M"AlC2 |
Mo | Sc | Mo2C+Al+Sc+C=Mo2ScAlC2 |
W | Ti Zr Hf | M'+Al+M'C+ M"C=M'2M"AlC2 |
M'2M"2AlC3 | ||
Cr | Ti V Ta | M'2AlC+2M"C=M'2M"2AlC3 |
Nb | Hf Ta | M'2AlC+2M"C=M'2M"2AlC3 |
Mo | Ti V Ta | M'2C+Al+2M"C= M'2M"2AlC3 |
W | Ti | W+Al+WC+2TiC=W2Ti2AlC3 |
Fig. 4. Reaction Gibbs free energies for o-MAX phases and the most competing reactions from 0 K to 1700 K: (a) Cr2TaAlC2; (b) Nb2HfAlC2; (c) Nb2Ta2AlC3; (d) Nb2TaAlC2; (e) Nb2Hf2AlC3; (f) Mo2Ta2AlC3; (g) Mo2V2AlC3.
[1] |
M.W. Barsoum, Prog. Solid State Chem. 28 (2000) 201-281.
DOI URL |
[2] |
P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, Thin Solid Films 518 (2010) 1851-1878.
DOI URL |
[3] |
Z. Liu, E. Wu, J. Wang, Y. Qian, H. Xiang, X. Li, Q. Jin, G. Sun, X. Chen, J. Wang, M. Li, Acta Mater. 73 (2014) 186-193.
DOI URL |
[4] |
X.H. Wang, Y.C. Zhou, J. Mater. Sci. Technol. 26 (2010) 385-416.
DOI URL |
[5] |
H. Zhang, T. Hu, X. Wang, Y. Zhou, J. Mater. Sci. Technol. 38 (2020) 205-220.
DOI |
[6] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248-4253.
DOI URL |
[7] |
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 27 (2015) 339-345.
DOI URL |
[8] |
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI |
[9] | Z. Li, Y. Wu, Small 15 (2019) e1804736. |
[10] |
X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, J. Mater. Sci. Technol. 115 (2022) 148-155.
DOI URL |
[11] |
P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44.
DOI URL |
[12] |
M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna, P. Simon, M.W. Bar-soum, Y. Gogotsi, Electrochem. Commun. 16 (2012) 61-64.
DOI URL |
[13] |
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, ACS Nano 12 (2018) 986-993.
DOI URL |
[14] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[15] | Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, ACS Appl. Mater. Inter-faces 7 (2015) 1795-1803. |
[16] |
Z. Liu, L. Zheng, L. Sun, Y. Qian, J. Wang, M. Li, G.P. Bei, J. Am. Ceram. Soc. 97 (2014) 67-69.
DOI URL |
[17] |
M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Phys. Rev. B 94 (2016) 125152.
DOI URL |
[18] |
B. Anasori, M. Dahlqvist, J. Halim, E.J. Moon, J. Lu, B.C. Hosler, E. a. N. Caspi, S.J. May, L. Hultman, P. Eklund, J. Rosen, M.W. Barsoum, J. Appl. Phys. 118 (2015) 094304.
DOI URL |
[19] |
R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Acta Mater. 125 (2017) 476-480.
DOI URL |
[20] |
E.N. Caspi, P. Chartier, F. Porcher, F. Damay, T. Cabioc’h, Mater. Res. Lett. 3 (2014) 100-106.
DOI URL |
[21] |
M. Dahlqvist, J. Rosen, Nanoscale 12 (2020) 785-794.
DOI PMID |
[22] |
C. Adamo, J. Chem. Phys. 110 (1999) 6158.
DOI URL |
[23] |
M.T.P. Rigby, V. Natu, M. Sokol, D.J. Kelly, D.G. Hopkinson, Y. Zou, J.R.T. Bird, L.J. Evitts, M. Smith, C.P. Race, P. Frankel, S.J. Haigh, M.W. Barsoum, RSC Adv. 11 (2021) 3110-3114.
DOI URL |
[24] |
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A. Stach, B. Anasori, Y. Gogotsi, ACS Nano 14 (2020) 204-217.
DOI URL |
[25] |
B. Anasori, J. Halim, J. Lu, C.A. Voigt, L. Hultman, M.W. Barsoum, Scr. Mater. 101 (2015) 5-7.
DOI URL |
[26] |
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R. Kent, Y. Gogotsi, M.W. Barsoum, ACS Nano 9 (2015) 9507-9516.
DOI PMID |
[27] |
P.A. Burr, D. Horlait, W.E. Lee, Mater. Res. Lett. 5 (2016) 144-157.
DOI URL |
[1] | Yuan Wang, Tao Zhang, Jianfei Xiao, Xiaobao Tian, Shaojun Yuan. Enhancing electrochemical performance of ultrasmall Fe2O3-embedded carbon nanotubes via combusting-induced high-valence dopants [J]. J. Mater. Sci. Technol., 2023, 134(0): 142-150. |
[2] | Xiao-Ming Huang, Ying Zhao, Hai-Le Yan, Shuai Tang, Yiqiao Yang, Nan Jia, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. A first-principle assisted framework for designing high elastocaloric Ni-Mn-based magnetic shape memory alloy [J]. J. Mater. Sci. Technol., 2023, 134(0): 151-162. |
[3] | Zhe Hu, Hanxu Lu, Wenjie Zhou, Jinxin Wei, Hanqing Dai, Hong Liu, Zhiyong Xiong, Fengxian Xie, Wanlu Zhang, Ruiqian Guo. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes [J]. J. Mater. Sci. Technol., 2023, 134(0): 189-196. |
[4] | Hongxiang Chen, Sheng Li, Jun Deng, Zhilong Zhang, Jianeng Huang, Fa Chang, Li Huang, Shixuan Du, Pinqiang Dai. Synthesis, formation mechanism, and intrinsic physical properties of several As/P-containing MAX phases [J]. J. Mater. Sci. Technol., 2023, 133(0): 23-31. |
[5] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[6] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[7] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[8] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[9] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[10] | Linggen Kong, Inna Karatchevtseva, Tao Wei, Nicholas Scales. Synthesis of hierarchical mesoporous Ln2Ti2O7 (Ln = Y, Tb-Yb) pyrochlores and uranyl sorption properties [J]. J. Mater. Sci. Technol., 2022, 113(0): 22-32. |
[11] | Lu Yu, Zipei Zhang, Juan Li, Wenhao Li, Shikai Wei, Sitong Wei, Guiwu Lu, Weiyu Song, Shuqi Zheng. Enhanced thermoelectric performance in n-type Mg3.2Sb1.5Bi0.5 doping with lanthanides at the Mg site [J]. J. Mater. Sci. Technol., 2022, 127(0): 108-114. |
[12] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[13] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[14] | H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding. Solid solution strengthening of high-entropy alloys from first-principles study [J]. J. Mater. Sci. Technol., 2022, 121(0): 105-116. |
[15] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||