J. Mater. Sci. Technol. ›› 2023, Vol. 134: 151-162.DOI: 10.1016/j.jmst.2022.06.041
• Research Article • Previous Articles Next Articles
Xiao-Ming Huanga, Ying Zhaoa, Hai-Le Yana,*(), Shuai Tangb, Yiqiao Yangc, Nan Jiaa, Bo Yanga, Zongbin Lia, Yudong Zhangd, Claude Eslingd, Xiang Zhaoa,*(
), Liang Zuoa
Received:
2022-04-15
Revised:
2022-06-14
Accepted:
2022-06-14
Published:
2022-07-25
Online:
2023-01-10
Contact:
Hai-Le Yan,Xiang Zhao
About author:
zhaox@mail.neu.edu.cn (X. Zhao).Xiao-Ming Huang, Ying Zhao, Hai-Le Yan, Shuai Tang, Yiqiao Yang, Nan Jia, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. A first-principle assisted framework for designing high elastocaloric Ni-Mn-based magnetic shape memory alloy[J]. J. Mater. Sci. Technol., 2023, 134: 151-162.
Fig. 1. (a) Relation between ?M and ?Str of the Ni-Mn-Z (Z=In, Sn and Sb) alloys. The data cited is from the following literature: a, b [12], c [9], d [24], e [25], f [26], g [27], h, i, j [28], k [29], l [30], m [31], n [32], o [33], p, q [34], r [35], s [17], t, u [36] and v, w [37]. (b) Relation between ?V/V0 and ?Str of a series of reported magnetic phase transition materials. The data cited is from the following literature: 1 [42], 2 [24], 3 [43], 4 [25], 5 [26], 6 [44], 7 [45], 8 [40], 9 [46], 10 [47], 11 [48], 12 [49], 13 [50], 14 [51], 15 [52], 16 [53], 17 [56] and 18 [57].
Fig. 2. Adopted strategies to increase ?Tad in this work, i.e., increasing ΔV/V0 assisted by first-principles calculations, reducing the negative contribution of ΔSmag by decreasing ΔM, and introducing strong crystallographic texture by directional solidification technique.
Fig. 3. (a) Illustration of computational scheme for determining ΔV/V0. Distribution of total energy E against c/a and ΔV/V0 for (b1) Ni8Mn5In3, (b2) Ni8Mn5In2Ga1, and (b3) Ni8Mn5In1Ga2. Evolutions of (c) ΔV/V0 and (d) the energy difference ΔE between austenite and martensite against Ga content.
Fig. 4. (a) DSC curves measured in the temperature range of 200 to 325 K. (b) Enlarged figure in the dashed box in (a). The inset clearly shows the change in Curie temperature of Ga3Cu2.5, Ga3Cu4, and Ga3Cu4.5 samples. (c) Phase diagram and transformation entropy change of the prepared samples.
Fig. 5. (a) Macrophoto and (b1, b2) backscattered electron (BSE) images of the directionally solidified Ga3Cu4.5 sample. The inset in (b2) shows composition maps in the area near the grain boundary. (c) EBSD orientation micrograph and (d) {004} pole figure of austenite measured by XRD technique.
Fig. 6. XRD patterns of Ga3Cu4.5 measured at (a) 298 K and (b) 183 K. (c) Comparison of ΔV/V0 for Ga3Cu4.5 with some typical Ni?Mn-based alloys: a [40], b [46], c [48], d [47], e,f [44], g [76], h [45], i [43], j [42], k [77], l [24], m [25] and n [26].
Fig. 7. (a) Comparison of ?Str for the Ga3Cu4.5 sample with those of some reported Ni?Mn-based alloys with Af < 298 K: a [13], b [78], c [22], d [34], e [29], f [30], g [34], h [79], i [28], j [9], k [80] and l [12]. (b) Specific heat capacity at low temperature (2-21 K). (c) Variation of saturation magnetization of Ga3Cu4.5 against the reduced temperature τ near 0 K. The inset shows the differential of magnetization with temperature (dM/dT) under a magnetic field of 0.01 T.
Fig. 8. Comparison of ?Thys of the Ga3Cu4.5 sample with other reported typical Ni?Mn-based alloys: 1 [78], 2, 3 [89], 4 [13], 5 [22], 6, 7 [34], 8, 9 [79], 10, 11 [29], 12 [17], 13 [37], 14, 15 [90], 16 [91], 17 [92], 18 [93], 19 [94], 20-22 [28], 23 [23], 24-26 [96], 27 [95], 28 [97] and 29 [98].
Fig. 9. (a) Comparison of compressive fracture curves for the Ga3Cu4.5 sample and the reported Ni-Mn-based alloys: Ni51.5Mn33In15.5 [80], Ni45.7Co4.2Mn37.3Sb12.8 [17], Ni43Co6Mn40Sn11 [79], Ni45Mn37In13Co5 [74], Ni45Mn44Sn11 [101], Ni50Mn34.8In15.2 [9] and Ni50Mn31.75Ti18.25 [41]. DS and P stand for the directionally solidified and the cast samples, respectively. (b) Cyclic stress-strain curves at the maximum strains of 5%, 6%, 7% and 8%. (c) Comparison of stress hysteresis for the Ga3Cu4.5 sample and other elastocaloric materials reported in the literature: a, b [102], c [40], d [41], e [103], f [104,105], g [106], h [107], i [108], j, k [109,110], l [111], m [110], n, o [110,112], p [113], q [114], r [115], s [13], t [116], u [117], v [118], w, x [1,101], y [17], z, aa, ab, ac [2,6,9], ad [80], ae, af [12,18], ag, ah [14], ai, aj, ak [3,20,119] and al [74].
Fig. 10. (a) Temperature change of the Ga3Cu4.5 directionally solidified sample. (b) Comparison of the present ?Tad with other reported Ni?Mn-based alloys: 1 [2], 2 [9], 3 [3], 4 [119], 5 [18], 6 [80], 7 [14], 8 [4], 9 [75], 10 [12], 11 [101], 12 [15], 13 [121], 14 [79], 15 [17], 16 [22], 17 [78], 18 [13].
Fig. 11. (a) Strain and stress dependence of ?Tad. (b) Comparison of |?Tad/?εtr| and |?Tad/?σmax| for the Ga3Cu4.5 sample with the other reported eCE materials: a [105], b [104], c [122], d [106], e [123], f [108], g [109], h [124], i [112], j [110], k [124], l [113], m [114], n [125], o [40], p [41], q [2], r [9], s [6], t [3], u [20], v [119], w [74], x [80], y [18], z [12], aa [126], ab [17], ac [78], ad [13], ae [22], af [1] and ag [121]. Open symbols, symbols with grid lines, and solid symbols represent the non-textured polycrystalline, the textured polycrystalline and the single crystal, respectively.
[1] |
W. Sun, J. Liu, B. Lu, Y. Li, A. Yan, Scr. Mater. 114 (2016) 1-4.
DOI URL |
[2] |
Y.J. Huang, Q.D. Hu, N.M. Bruno, J.-H. Chen, I. Karaman, J.H. Ross, J.G. Li, Scr. Mater. 105 (2015) 42-45.
DOI URL |
[3] |
B. Lu, F. Xiao, A. Yan, J. Liu, Appl. Phys. Lett. 105 (2014) 161905.
DOI URL |
[4] |
J.P. Camarillo, C.O. Aguilarortiz, H. Floreszúñiga, D. Ríosjara, D.E. Sotoparra, E. Sterntaulats, L. Mañosa, A. Planes, Funct. Mater. Lett. 10 (2017) 1740007.
DOI URL |
[5] |
T. Gottschall, A. Gracia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Manosa, A. Planes, K.P. Skokov, O. Gutfleisch, Nat. Mater. 17 (2018) 929-934.
DOI PMID |
[6] |
Z.Z. Li, Z.B. Li, D. Li, J.J. Yang, B. Yang, Y. Hu, D.H. Wang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 192 (2020) 52-59.
DOI URL |
[7] |
A. Gràcia-Condal, T. Gottschall, L. Pfeuffer, O. Gutfleisch, A. Planes, L. Mañosa, Appl. Phys. Rev. 7 (2020) 041406.
DOI URL |
[8] |
G. Zhang, D. Li, C. Liu, Z. Li, B. Yang, H. Yan, X. Zhao, L. Zuo, Scr. Mater. 201 (2021) 113947.
DOI URL |
[9] |
X.-M. Huang, L.-D. Wang, H.-X. Liu, H.-L. Yan, N. Jia, B. Yang, Z.-B. Li, Y.-D. Zhang, C. Esling, X. Zhao, L. Zuo, Intermetallics 113 (2019) 106579.
DOI URL |
[10] |
X.-M. Huang, Y. Zhao, H.-L. Yan, N. Jia, B. Yang, Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloy. Compd. 889 (2021) 161652.
DOI URL |
[11] |
L. Pfeuffer, J. Lemke, N. Shayanfar, S. Riegg, D. Koch, A. Taubel, F. Scheibel, N.A. Kani, E. Adabifiroozjaei, L. Molina-Luna, K.P. Skokov, O. Gutfleisch, Acta Mater. 221 (2021) 117390.
DOI URL |
[12] |
X.-M. Huang, Y. Zhao, H.-L. Yan, N. Jia, S. Tang, J. Bai, B. Yang, Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 185 (2020) 94-99.
DOI URL |
[13] |
D. Li, Z.B. Li, X.L. Zhang, B. Yang, D.H. Wang, X. Zhao, L. Zuo, Scr. Mater. 189 (2020) 78-83.
DOI URL |
[14] |
D.W. Zhao, J. Liu, X. Chen, W. Sun, Y. Li, M.X. Zhang, Y.Y. Shao, H. Zhang, A. Yan, Acta Mater. 133 (2017) 217-223.
DOI URL |
[15] |
Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu, Scr. Mater. 163 (2019) 14-18.
DOI URL |
[16] |
Y.H. Qu, A. Gràcia-Condal, L. Mañosa, A. Planes, D.Y. Cong, Z.H. Nie, Y. Ren, Y.D. Wang, Acta Mater. 177 (2019) 46-55.
DOI URL |
[17] |
Z.Z. Li, Z.B. Li, J.J. Yang, D. Li, B. Yang, H.L. Yan, Z.H. Nie, L. Hou, X. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 162 (2019) 486-491.
DOI URL |
[18] |
X.H. Tang, Y. Feng, H.B. Wang, P. Wang, Appl. Phys. Lett. 114 (2019) 033901.
DOI URL |
[19] |
T. Kihara, X. Xu, W. Ito, R. Kainuma, M. Tokunaga, Phys. Rev. B 90 (2014) 214409.
DOI URL |
[20] |
D.W. Zhao, J. Liu, Y. Feng, W. Sun, A. Yan, Appl. Phys. Lett. 110 (2017) 021906.
DOI URL |
[21] |
V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alarcos, V. Zablotskii, E. Cesari, S. Kustov, Acta Mater. 60 (2012) 3168-3175.
DOI URL |
[22] |
J.M. Wang, Q. Yu, K.Y. Xu, C. Zhang, Y.Y. Wu, C.B. Jiang, Scr. Mater. 130 (2017) 148-151.
DOI URL |
[23] |
Z.Z. Li, Z.B. Li, D. Li, J.J. Yang, B. Yang, D.H. Wang, L. Hou, X. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Appl. Phys. Lett. 115 (2019) 083903.
DOI URL |
[24] | L. Pfeuffer, T. Gottschall, T. Faske, A. Taubel, F. Scheibel, A.Y. Karpenkov, S. Ener, K.P. Skokov, O. Gutfleisch, Phys. Rev. Mater. 4 (2020) 111401. |
[25] |
L.M. Wang, Z.B. Li, J.J. Yang, B. Yang, X. Zhao, L. Zuo, Intermetallics 125 (2020) 106888.
DOI URL |
[26] |
H.-L. Yan, X.-M. Huang, J.-H. Yang, Y. Zhao, F. Fang, N. Jia, J. Bai, B. Yang, Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Intermetallics 130 (2021) 107063.
DOI URL |
[27] |
V. Recarte, J.I. Pérez-Landazábal, S. Kustov, E. Cesari, J. Appl. Phys. 107 (2010) 053501.
DOI URL |
[28] | Z.B. Li, J.J. Yang, D. Li, Z.Z. Li, B. Yang, H.L. Yan, C.F. Sánchez-Valdés, J.L.S. Lla-mazares, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Adv. Electron. Mater. 5 (2019) 1800845. |
[29] |
Y.H. Qu, D.Y. Cong, X.M. Sun, Z.H. Nie, W.Y. Gui, R.G. Li, Y. Ren, Y.D. Wang, Acta Mater. 134 (2017) 236-248.
DOI URL |
[30] |
Z.B. Li, Y.W. Jiang, Z.Z. Li, C.F. Sanchez Valdes, J.L. Sanchez Llamazares, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, IUCrJ 5 (2018) 54-66.
DOI URL |
[31] |
L. Huang, D.Y. Cong, H.L. Suo, Y.D. Wang, Appl. Phys. Lett. 104 (2014) 132407.
DOI URL |
[32] |
H. Zhang, X. Zhang, M. Qian, Z. Yao, L. Wei, L. Geng, J. Magn. Magn. Mater. 500 (2020) 166359.
DOI URL |
[33] |
H. Zhang, X. Zhang, M. Qian, L. Yin, L. Wei, D. Xing, J. Sun, L. Geng, Appl. Phys. Lett. 116 (2020) 063904.
DOI URL |
[34] |
M.N. Inallu, P. Kameli, A.G. Varzaneh, I.A. Sarsari, D. Salazar, I. Orue, V.A. Cher-nenko, J. Phys. D 52 (2019) 235001.
DOI URL |
[35] |
A.K. Nayak, K.G. Suresh, A.K. Nigam, A.A. Coelho, S. Gama, J. Appl. Phys. 106 (2009) 053901.
DOI URL |
[36] |
R. Sahoo, D.M. Raj Kumar, D. Arvindha Babu, K.G. Suresh, A.K. Nigam, M. Manivel Raja, J. Magn. Magn. Mater. 347 (2013) 95-100.
DOI URL |
[37] |
C. Salazar-Mejia, V. Kumar, C. Felser, Y. Skourski, J. Wosnitza, A.K. Nayak, Phys. Rev. Appl. 11 (2019) 054006.
DOI URL |
[38] |
K.A. Gschneidner, Y. Mudryk, V.K. Pecharsky, Scr. Mater. 67 (2012) 572- 577.
DOI URL |
[39] |
T. Samanta, D.L. Lepkowski, A.U. Saleheen, A. Shankar, J. Prestigiacomo, I. Dubenko, A. Quetz, I.W.H. Oswald, G.T. McCandless, J.Y. Chan, P.W. Adams, D.P. Young, N. Ali, S. Stadler, Phys. Rev. B 91 (2015) 020401.
DOI URL |
[40] |
D. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, Y. Wang, Phys. Rev. Lett. 122 (2019) 255703.
DOI URL |
[41] |
H.-L. Yan, L.-D. Wang, H.-X. Liu, X.-M. Huang, N. Jia, Z.-B. Li, B. Yang, Y.-D. Zhang, C. Esling, X. Zhao, L. Zuo, Mater. Des. 184 (2019) 108180.
DOI URL |
[42] |
L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-L. Tamarit, S. Aksoy, M. Acet, Nat. Mater. 9 (2010) 478-481.
DOI PMID |
[43] |
M.K. Chattopadhyay, V.K. Sharma, A. Chouhan, P. Arora, S.B. Roy, Phys. Rev. B 84 (2011) 064417.
DOI URL |
[44] |
C.O. Aguilar-Ortiz, D. Soto-Parra, P. Álvarez-Alonso, P. Lázpita, D. Salazar, P.O. Castillo-Villa, H. Flores-Zúñiga, V.A. Chernenko, Acta Mater. 107 (2016) 9-16.
DOI URL |
[45] |
S. Aksoy, M. Acet, E.F. Wassermann, T. Krenke, X. Moya, L. Mañosa, A. Planes, P.P. Deen, Philos. Mag. 89 (2009) 2093-2109.
DOI URL |
[46] |
S.Y. Yu, Z.X. Cao, L. Ma, G.D. Liu, J.L. Chen, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 91 (2007) 102507.
DOI URL |
[47] |
F. Albertini, S. Fabbrici, A. Paoluzi, J. Kamarad, Z. Arnold, L. Righi, M. Solzi, G. Porcari, C. Pernechele, D. Serrate, P. Algarabel, Mater. Sci. Forum 684 (2011) 151-163.
DOI URL |
[48] |
L. Mañosa, E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, B. Emre, S. Yüce, S. Fabbrici, F. Albertini, Phys. Status Solidi B 251 (2014) 2114-2119.
DOI URL |
[49] |
R.R. Wu, L.F. Bao, F.X. Hu, H. Wu, Q.Z. Huang, J. Wang, X.L. Dong, G.N. Li, J.R. Sun, F.R. Shen, T.Y. Zhao, X.Q. Zheng, L.C. Wang, Y. Liu, W.L. Zuo, Y.Y. Zhao, M. Zhang, X.C. Wang, C.Q. Jin, G.H. Rao, X.F. Han, B.G. Shen, Sci. Rep. 5 (2015) 18027.
DOI URL |
[50] |
T. Samanta, P. Lloveras, A.U. Saleheen, D.L. Lepkowski, E. Kramer, I. Dubenko, P.W. Adams, D.P. Young, M. Barrio, J.L. Tamarit, N. Ali, S. Stadler, Appl. Phys. Lett. 112 (2018) 021907.
DOI URL |
[51] |
A. Aznar, P. Lloveras, J.Y. Kim, E. Stern-Taulats, M. Barrio, J.L. Tamarit, C.F. Sánchez-Valdés, J.L. Sánchez Llamazares, N.D. Mathur, X. Moya, Adv. Mater. 31 (2019) 1903577.
DOI URL |
[52] |
Y.F. Kuang, B. Yang, H.J. Xu, X.W. Hao, Z.B. Li, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloy. Compd. 835 (2020) 155313.
DOI URL |
[53] |
E. Stern-Taulats, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, L. Mañosa, Appl. Phys. Lett. 107 (2015) 152409.
DOI URL |
[54] |
C.F. Sánchez-Valdés, R.R. Gimaev, M. López-Cruz, J.L. Sánchez Llamazares, V.I. Zverev, A.M. Tishin, A.M.G. Carvalho, D.J.M. Aguiar, Y. Mudryk, V.K. Pecharsky, J. Magn. Magn. Mater. 498 (2020) 166130.
DOI URL |
[55] |
M.L. Arreguín-Hernández, C.F. Sánchez-Valdés, J.L.S. Llamazares, D. Ríos- Jara, V.K. Pecharsky, M.I. Blinov, V.N. Prudnikov, B.B. Kovalev, V.I. Zverev, A.M. Tishin, J. Alloy. Compd. 871 (2021) 159586.
DOI URL |
[56] |
L. Mañosa, D. Gonzalez-Alonso, A. Planes, M. Barrio, J.L. Tamarit, I.S. Titov, M. Acet, A. Bhattacharyya, S. Majumdar, Nat. Commun. 2 (2011) 595.
DOI PMID |
[57] |
S. Yuce, M. Barrio, B. Emre, E. Stern-Taulats, A. Planes, J.L. Tamarit, Y. Mudryk, K.A. Gschneidner, V.K. Pecharsky, L. Manosa, Appl. Phys. Lett. 101 (2012) 071906.
DOI URL |
[58] |
L. Righi, F. Albertini, L. Pareti, A. Paoluzi, G. Calestani, Acta Mater. 55 (2007) 5237-5245.
DOI URL |
[59] |
H.L. Yan, Y.D. Zhang, N. Xu, A. Senyshyn, H.-G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Acta Mater. 88 (2015) 375-388.
DOI URL |
[60] |
L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Bessegh-ini, C. Ritter, F. Passaretti, Acta Mater. 56 (2008) 4529-4535.
DOI URL |
[61] |
J. Hafner, J. Comput. Chem. 29 (2008) 2044-2078.
DOI URL |
[62] |
G.G. Kresse, J.J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
DOI PMID |
[63] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[64] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[65] |
S. Kaufmann, U.K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fähler, Phys. Rev. Lett. 104 (2010) 145702.
DOI URL |
[66] |
P. Entel, M. Siewert, M.E. Gruner, A. Chakrabarti, S.R. Barman, V.V. Sokolovskiy, V.D. Buchelnikov, J. Alloy. Compd. 577 (2013) S107-S112.
DOI URL |
[67] |
H.-L. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater. 202 (2021) 112-123.
DOI URL |
[68] | K. Bhattacharya, Microstructure of Martensite: Why It Forms And How It Gives Rise to The Shape-Memory Effect, Oxford University Press, 2003. |
[69] |
H.-L. Yan, Y. Zhao, H.-X. Liu, M.-J. Zhang, H.-F. Zhang, J. Bai, N. Jia, B. Yang, Z.-B. Li, Y.-D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloy. Compd. 821 (2020) 153481.
DOI URL |
[70] |
E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 70 (2004) 024427.
DOI URL |
[71] |
E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 71 (2005) 214412.
DOI URL |
[72] |
E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 77 (2008) 064417.
DOI URL |
[73] |
W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, K. Ishida, Metall. Mater. Trans. A 38 (2007) 759-766.
DOI URL |
[74] |
A. Shen, W. Sun, D. Zhao, J. Liu, Phys. Lett. A 382 (2018) 2876-2879.
DOI URL |
[75] |
F. Henández-Navarro, J.P. Camarillo-Garcia, C.O. Aguilar-Ortiz, H. Flo-res-Zúñiga, D. Ríos, J.G. González, P. Álvarez-Alonso, Appl. Phys. Lett. 112 (2018) 164101.
DOI URL |
[76] |
V. Recarte, M. Zbiri, M. Jimenez-Ruiz, V. Sanchez-Alarcos, J.I. Perez-Landaza-bal, J. Phys. Condes. Matter 28 (2016) 205402.
DOI URL |
[77] |
L. Mañosa, X. Moya, A. Planes, O. Gutfleisch, J. Lyubina, M. Barrio, J.-L.s. Tamarit, S. Aksoy, T. Krenke, M. Acet, Appl. Phys. Lett. 92 (2008) 012515.
DOI URL |
[78] |
D. Li, Z.B. Li, J.J. Yang, Z.Z. Li, B. Yang, H. Yan, D.H. Wang, L. Hou, X. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 163 (2019) 116-120.
DOI URL |
[79] |
Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Acta Mater. 151 (2018) 41-55.
DOI URL |
[80] |
Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Acta Mater. 127 (2017) 33-42.
DOI URL |
[81] |
B. Li, W.J. Ren, Q. Zhang, X.K. Lv, X.G. Liu, H. Meng, J. Li, D. Li, Z.D. Zhang, Appl. Phys. Lett. 95 (2009) 172506.
DOI URL |
[82] |
P. Debye, Ann. Phys. (Leipzig) 344 (1912) 789-839.
DOI URL |
[83] |
P.J.V. Ranke, N.A. de Oliveira, C. Mello, A.M.G. Carvalho, S. Gama, Phys. Rev. B 71 (2005) 054410.
DOI URL |
[84] |
G.J. Liu, J.R. Sun, J. Lin, Y.W. Xie, T.Y. Zhao, H.W. Zhang, B.G. Shen, Appl. Phys. Lett. 88 (2006) 212505.
DOI URL |
[85] |
J. Xia, Y. Noguchi, X. Xu, T. Odaira, Y. Kimura, M. Nagasako, T. Omori, R. Kainuma, Science 369 (2020) 855-858.
DOI PMID |
[86] | P.M. Chaikin, T.C. Lubensky, in: Principles of Condensed Matter Physics, Cam-bridge University Press, Cambridge, 1995, pp. 1-28. |
[87] |
V. Recarte, J.I. Perez-Landazabal, C. Gomez-Polo, V. Sanchez-Alarcos, E. Cesari, J. Pons, J. Phys.: Condens. Matter 22 (2010) 416001.
DOI URL |
[88] |
T. Gottschall, K.P. Skokov, D. Benke, M.E. Gruner, O. Gutfleisch, Phys. Rev. B 93 (2016) 184431.
DOI URL |
[89] |
Z. Li, Z. Li, B. Yang, Y. Yang, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Magn. Magn. Mater. 445 (2018) 71-76.
DOI URL |
[90] |
W.J. Feng, L. Zuo, Y.B. Li, Y.D. Wang, M. Gao, G.L. Fang, Mater. Sci. Eng. B 176 (2011) 621-625.
DOI URL |
[91] |
F. Luo, X. He, S. Rauf, C.P. Yang, Z.G. Sun, Z. Tayyab, R.L. Wang, S.H. Liang, K.B. Zhang, G.Q. Liu, H.B. Xiao, V.V. Marchenkov, J. Magn. Magn. Mater. 502 (2020) 166277.
DOI URL |
[92] |
R. Sahoo, A.K. Nayak, K.G. Suresh, A.K. Nigam, J. Appl. Phys. 109 (2011) 123904.
DOI URL |
[93] |
S. Pandey, A. Quetz, A. Aryal, I. Dubenko, M. Blinov, I. Rodionov, V. Prudnikov, D. Mazumdar, A. Granovsky, S. Stadler, N. Ali, J. Appl. Phys. 121 (2017) 133901.
DOI URL |
[94] |
Z.Z. Li, Z.B. Li, B. Yang, X. Zhao, L. Zuo, Scr. Mater. 151 (2018) 61-65.
DOI URL |
[95] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626.
DOI URL |
[96] |
Z.B. Li, S.Y. Dong, Z.Z. Li, B. Yang, F. Liu, C.F. Sánchez-Valdés, J.L. Sánchez Lla-mazares, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 159 (2019) 113-118.
DOI URL |
[97] |
E. Stern-Taulats, P.O. Castillo-Villa, L. Mañosa, C. Frontera, S. Pramanick, S. Ma-jumdar, A. Planes, J. Appl. Phys. 115 (2014) 173907.
DOI URL |
[98] |
J.-P. Camarillo, E. Stern-Taulats, L. Mañosa, H. Flores-Zúñiga, D. Ríos-Jara, A. Planes, J. Phys. D-Appl. Phys. 49 (2016) 125006.
DOI URL |
[99] |
Y. Song, X. Chen, V. Dabade, T.W. Shield, R.D. James, Nature 502 (2013) 85-88.
DOI URL |
[100] |
K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Nature 428 (2004) 55-59.
DOI URL |
[101] |
W. Sun, J. Liu, D.W. Zhao, M.X. Zhang, J. Phys. D-Appl. Phys. 50 (2017) 444001.
DOI URL |
[102] |
Y. Shen, Z. Wei, W. Sun, Y. Zhang, E. Liu, J. Liu, Acta Mater. 188 (2020) 677-685.
DOI URL |
[103] |
F. Xiao, M. Jin, J. Liu, X. Jin, Acta Mater. 96 (2015) 292-300.
DOI URL |
[104] |
Y. Xu, B.F. Lu, W. Sun, A. Yan, J. Liu, Appl. Phys. Lett. 106 (2015) 201903.
DOI URL |
[105] |
Y. Li, D. Zhao, J. Liu, Sci. Rep. 6 (2016) 25500.
DOI URL |
[106] |
A. Shen, D. Zhao, W. Sun, J. Liu, C. Li, Scr. Mater. 127 (2017) 1-5.
DOI URL |
[107] |
G.J. Pataky, E. Ertekin, H. Sehitoglu, Acta Mater. 96 (2015) 420-427.
DOI URL |
[108] |
S. Xu, H.Y. Huang, J.X. Xie, S. Takekawa, X. Xu, T. Omori, R. Kainuma, APL Mater. 4 (2016) 106106.
DOI URL |
[109] |
L. Manosa, S. Jarque-Farnos, E. Vives, A. Planes, Appl. Phys. Lett. 103 (2013) 211904.
DOI URL |
[110] |
Y. Wu, E. Ertekin, H. Sehitoglu, Acta Mater. 135 (2017) 158-176.
DOI URL |
[111] |
L.C. Brown, Metall. Trans. A 12 (1981) 1491-1494.
DOI URL |
[112] |
J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Appl. Phys. Lett. 101 (2012) 073904.
DOI URL |
[113] |
H. Chen, F. Xiao, X. Liang, Z. Li, X. Jin, T. Fukuda, Acta Mater. 158 (2018) 330-339.
DOI URL |
[114] |
Y. Kim, M.G. Jo, J.W. Park, H.K. Park, H.N. Han, Scr. Mater. 144 (2018) 48-51.
DOI URL |
[115] |
C. Bechtold, C. Chluba, R. Lima de Miranda, E. Quandt, Appl. Phys. Lett. 101 (2012) 091903.
DOI URL |
[116] |
J. Guo, Z. Wei, Y. Shen, Y. Zhang, J. Li, X. Hou, J. Liu, Scr. Mater. 185 (2020) 56-60.
DOI URL |
[117] |
L. Wei, X. Zhang, J. Liu, L. Geng, AIP Adv. 8 (2018) 055312.
DOI URL |
[118] |
D. Zhao, T. Castán, A. Planes, Z. Li, W. Sun, J. Liu, Phys. Rev. B 96 (2017) 224105.
DOI URL |
[119] |
B. Lu, P. Zhang, Y. Xu, W. Sun, J. Liu, Mater. Lett. 148 (2015) 110-113.
DOI URL |
[120] |
Z. Zhang, R.D. James, S. Müller, Acta Mater. 57 (2009) 4332-4352.
DOI URL |
[121] |
Y. Li, W. Sun, D. Zhao, H. Xu, J. Liu, Scr. Mater. 130 (2017) 278-282.
DOI URL |
[122] |
D. Zhao, F. Xiao, Z. Nie, D. Cong, W. Sun, J. Liu, Scr. Mater. 149 (2018) 6-10.
DOI URL |
[123] |
F. Xiao, T. Fukuda, T. Kakeshita, Appl. Phys. Lett. 102 (2013) 161914.
DOI URL |
[124] |
J. Tušek, K. Engelbrecht, R. Millán-Solsona, L. Mañosa, E. Vives, L.P. Mikkelsen, N. Pryds, Adv. Energy Mater. 5 (2015) 1500361.
DOI URL |
[125] |
Z.Y. Wei, W. Sun, Q. Shen, Y. Shen, Y.F. Zhang, E.K. Liu, J. Liu, Appl. Phys. Lett. 114 (2019) 101903.
DOI URL |
[126] |
Q. Shen, D.W. Zhao, W. Sun, Y. Li, J. Liu, J. Alloy. Compd. 696 (2017) 538-542.
DOI URL |
[127] |
J. Hao, F. Hu, J.-T. Wang, F.-R. Shen, Z. Yu, H. Zhou, H. Wu, Q. Huang, K. Qiao, J. Wang, J. He, L. He, J.-R. Sun, B. Shen, Chem. Mater. 32 (2020) 1807-1818.
DOI URL |
[128] |
B. Emre, I. Dincer, Y. Elerman, Intermetallics 31 (2012) 16-20.
DOI URL |
[129] | N.J. Ghimire, S.K. Cary, S. Eley, N.A. Wakeham, P.F.S. Rosa, T. Albrecht-Schmitt, Y. Lee, M. Janoschek, C.M. Brown, L. Civale, J.D. Thompson, F. Ronning, E.D. Bauer, Phys. Rev. B 93 (20) (2016). |
[130] |
I. Dincer, E. Yüzüak, G. Durak, Y. Elerman, J. Alloy. Compd. 588 (2014) 332-336.
DOI URL |
[131] | G.A. Slack, Solid State Phys. 34 (1979) 1-71. |
[132] |
M. Pugaczowa-Michalska, Solid State Commun. 140 (2006) 251-255.
DOI URL |
[133] |
M.D. Kuz’min, Phys. Rev. Lett. 94 (2005) 107204.
DOI URL |
[1] | Wanting Sun, Jiasi Luo, Yim Ying Chan, J.H. Luan, Xu-Sheng Yang. An extraordinary-performance gradient nanostructured Hadfield manganese steel containing multi-phase nanocrystalline-amorphous core-shell surface layer by laser surface processing [J]. J. Mater. Sci. Technol., 2023, 134(0): 209-222. |
[2] | Tianwei Liu, Lunwei Liang, Dierk Raabe, Lanhong Dai. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134(0): 244-253. |
[3] | Yue Ren, Tingyi Yan, Zhuobin Huang, Qing Zhou, Ke Hua, Xiaolin Li, Yin Du, Qian Jia, Long Zhang, Haifeng Zhang, Haifeng Wang. Cryogenic wear behaviors of a metastable Ti-based bulk metallic glass composite [J]. J. Mater. Sci. Technol., 2023, 134(0): 33-41. |
[4] | Xianghui Feng, Nan Li, Baiyi Chen, Chao Zeng, Tianyu Bai, Kai Wu, Yonghong Cheng, Bing Xiao. Thermodynamics for the non-conventional synthesizing of out-of-plane ordered double-transition metal “312” and “413” MAX phases (o-MAX): A high throughput linear programing first-principles calculation [J]. J. Mater. Sci. Technol., 2023, 134(0): 81-88. |
[5] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[6] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
[7] | Lu Yu, Zipei Zhang, Juan Li, Wenhao Li, Shikai Wei, Sitong Wei, Guiwu Lu, Weiyu Song, Shuqi Zheng. Enhanced thermoelectric performance in n-type Mg3.2Sb1.5Bi0.5 doping with lanthanides at the Mg site [J]. J. Mater. Sci. Technol., 2022, 127(0): 108-114. |
[8] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[9] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[10] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[11] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[12] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[13] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[14] | Bashir S. Shariat, Yingchao Li, Hong Yang, Yunzhi Wang, Yinong Liu. On the Lüders band formation and propagation in NiTi shape memory alloys [J]. J. Mater. Sci. Technol., 2022, 116(0): 22-29. |
[15] | Zhenzhuang Li, Zongbin Li, Yunzhuo Lu, Xing Lu, Liang Zuo. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 167-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||