J. Mater. Sci. Technol. ›› 2022, Vol. 129: 115-126.DOI: 10.1016/j.jmst.2022.04.028
• Research Article • Previous Articles Next Articles
Timothy Alexander Listyawana,1, Maya Putri Agustianingruma,1, Young Sang Nab,1, Ka Ram Limb,*(
), Nokeun Parka,c,**(
)
Received:2022-03-01
Revised:2022-03-31
Accepted:2022-04-16
Published:2022-12-01
Online:2022-05-18
Contact:
Ka Ram Lim,Nokeun Park
About author:** School of Materials Science and Engineering, Yeungnam University, 280 Daehak-ro, Gyeongbuk 38541, Republic of Korea. E-mail addresses: nokeun_park@yu.ac.kr (N. Park).1 These authors contributed equally to this work.
Timothy Alexander Listyawan, Maya Putri Agustianingrum, Young Sang Na, Ka Ram Lim, Nokeun Park. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 129: 115-126.
| Alloys | Al | Co | Cr | Fe | Ni | |
|---|---|---|---|---|---|---|
| 5-Equi | Nominal | 20 | 20 | 20 | 20 | 20 |
| BCC | 1.4 | 21.5 | 42.0 | 30.5 | 4.6 | |
| B2 | 30.3 | 20.2 | 5.2 | 13.9 | 30.4 | |
| 5-B 40 | Nominal | 12.9 | 20.9 | 27.3 | 24 | 14.9 |
| BCC | 1.5 | 21.5 | 40.2 | 32.2 | 4.7 | |
| B2 | 28.6 | 22.3 | 2.6 | 17.0 | 29.5 | |
| 4-B 2013 | Nominal | 13.6 | - | 13.3 | 61.9 | 11.2 |
| BCC | 7.3 | - | 17.2 | 73.3 | 2.1 | |
| B2 | 38.7 | - | 1.3 | 17.8 | 42.1 | |
Table 1. Chemical composition (at.%) of the alloys characterized by APT [11].
| Alloys | Al | Co | Cr | Fe | Ni | |
|---|---|---|---|---|---|---|
| 5-Equi | Nominal | 20 | 20 | 20 | 20 | 20 |
| BCC | 1.4 | 21.5 | 42.0 | 30.5 | 4.6 | |
| B2 | 30.3 | 20.2 | 5.2 | 13.9 | 30.4 | |
| 5-B 40 | Nominal | 12.9 | 20.9 | 27.3 | 24 | 14.9 |
| BCC | 1.5 | 21.5 | 40.2 | 32.2 | 4.7 | |
| B2 | 28.6 | 22.3 | 2.6 | 17.0 | 29.5 | |
| 4-B 2013 | Nominal | 13.6 | - | 13.3 | 61.9 | 11.2 |
| BCC | 7.3 | - | 17.2 | 73.3 | 2.1 | |
| B2 | 38.7 | - | 1.3 | 17.8 | 42.1 | |
Fig. 3. Microstructure of 5-Equi after oxidation at 1323 K for 48 h. (a) Representative SEM-BSE image, giving an overview of oxide layer and base metal. High magnification BF-TEM images including elemental mappings and SADPs of (b-d) oxide layer and (e-g) base metal. Red circles in (b) and (e) indicate where the SADPs were obtained from the oxide layer and base metal, respectively.
Fig. 4. Microstructure of 5-B 40 after oxidation at 1323 K for 48 h. (a) High magnification BF-TEM images including (b) elemental mappings and (c) SADPs. Red circles in (a) indicate where the SADPs were obtained from the oxide layer and base metal, respectively.
Fig. 5. Microstructure of 4-B 2013 after oxidation at 1323 K for 48 h. (a) High magnification BF-TEM images including (b) elemental mappings and (c) SADPs. Red circles in (a) indicate where the SADPs were obtained from the oxide layer and base metal, respectively.
| Points | Composition (at.%) | Phase | |||||
|---|---|---|---|---|---|---|---|
| Al | Co | Cr | Fe | Ni | O | ||
| 1 | 0.10 | 0.21 | 39.88 | 0.32 | 0.15 | 59.34 | Cr2O3 |
| 2 | 0.35 | 25.05 | 23.89 | 31.58 | 14.27 | 4.85 | FCC |
| 3 | 3.58 | 23.60 | 22.89 | 30.01 | 13.52 | 6.40 | B2 |
| 4 | 38.71 | 4.40 | 4.51 | 5.87 | 2.52 | 43.99 | Al2O3 |
| 5 | 0.37 | 25.47 | 25.51 | 31.63 | 14.92 | 2.09 | FCC |
Table 2. TEM-EDS result of 5-Equi after oxidation at 1323 K for 48 h.
| Points | Composition (at.%) | Phase | |||||
|---|---|---|---|---|---|---|---|
| Al | Co | Cr | Fe | Ni | O | ||
| 1 | 0.10 | 0.21 | 39.88 | 0.32 | 0.15 | 59.34 | Cr2O3 |
| 2 | 0.35 | 25.05 | 23.89 | 31.58 | 14.27 | 4.85 | FCC |
| 3 | 3.58 | 23.60 | 22.89 | 30.01 | 13.52 | 6.40 | B2 |
| 4 | 38.71 | 4.40 | 4.51 | 5.87 | 2.52 | 43.99 | Al2O3 |
| 5 | 0.37 | 25.47 | 25.51 | 31.63 | 14.92 | 2.09 | FCC |
| Points | Composition (at.%) | Phase | |||||
|---|---|---|---|---|---|---|---|
| Al | Co | Cr | Fe | Ni | O | ||
| 1 | 59.75 | 0.20 | 0.28 | 0.07 | 0.19 | 39.51 | Al2O3 |
| 2 | 2.40 | 23.97 | 29.87 | 28.37 | 12.68 | 2.72 | FCC |
| 3 | 18.15 | 22.96 | 6.61 | 14.16 | 37.60 | 0.52 | B2 |
| 4 | 2.64 | 24.47 | 29.05 | 31.30 | 12.54 | 0.00 | BCC |
Table 3. TEM-EDS result of 5-B 40 after oxidation at 1323 K for 48 h.
| Points | Composition (at.%) | Phase | |||||
|---|---|---|---|---|---|---|---|
| Al | Co | Cr | Fe | Ni | O | ||
| 1 | 59.75 | 0.20 | 0.28 | 0.07 | 0.19 | 39.51 | Al2O3 |
| 2 | 2.40 | 23.97 | 29.87 | 28.37 | 12.68 | 2.72 | FCC |
| 3 | 18.15 | 22.96 | 6.61 | 14.16 | 37.60 | 0.52 | B2 |
| 4 | 2.64 | 24.47 | 29.05 | 31.30 | 12.54 | 0.00 | BCC |
| Points | Composition (at.%) | Phase | ||||
|---|---|---|---|---|---|---|
| Al | Cr | Fe | Ni | O | ||
| 1 | 37.75 | 0.96 | 0.45 | 0.16 | 60.68 | Al2O3 |
| 2 | 3.06 | 17.56 | 75.56 | 2.77 | 1.05 | BCC |
| 3 | 15.66 | 3.35 | 26.39 | 54.60 | 0.00 | B2 |
Table 4. TEM-EDS result of 4-B 2013 after oxidation at 1323 K for 48 h.
| Points | Composition (at.%) | Phase | ||||
|---|---|---|---|---|---|---|
| Al | Cr | Fe | Ni | O | ||
| 1 | 37.75 | 0.96 | 0.45 | 0.16 | 60.68 | Al2O3 |
| 2 | 3.06 | 17.56 | 75.56 | 2.77 | 1.05 | BCC |
| 3 | 15.66 | 3.35 | 26.39 | 54.60 | 0.00 | B2 |
| Alloys | Ea (kJ mol−1) | |
|---|---|---|
| Range I (1323-1373 K) | Range II (1173-1323 K) | |
| 5-Equi | 324.3 | 10.5 |
| 5-B 40 | 330.9 | 16.8 |
| 4-B 2013 | 473.9 | 29.3 |
Table 5. Activation energies (Ea) 5-Equi, 5-B 40, and 4-B 2013 after oxidation test.
| Alloys | Ea (kJ mol−1) | |
|---|---|---|
| Range I (1323-1373 K) | Range II (1173-1323 K) | |
| 5-Equi | 324.3 | 10.5 |
| 5-B 40 | 330.9 | 16.8 |
| 4-B 2013 | 473.9 | 29.3 |
Fig. 10. (a) Relationship between calculated VEC and oxidation rate and (b) the plot of oxidation rate vs. FCC phase fraction after oxidation at 1323 K.
| Alloys | Activation energy (kJ mol−1) | Temperature range (K) | Oxidation duration (h) | Refs. |
|---|---|---|---|---|
| 5-Equi | 324.3 | 1323-1373 | ±48 | This work |
| 5-B 40 | 330.9 | 1323-1373 | ±48 | This work |
| 4-B 2013 | 473.9 | 1323-1373 | ±48 | This work |
| Al0.5CoCrFeNi | 143.5 | 1073-1273 | ±72 | [ |
| Al0.6CrFeNi | 291.8 | 1073-1273 | ±100 | [ |
| Al0.6CrFeNiSi0.3 | 270.2 | 1073-1273 | ±100 | [ |
| SS 439 (Ferritic Stainless Steel) | 251.9 | 1123-1073 | ±55 | [ |
| P92 (Martensitic Stainless Steel) | 466.1 | 973-1223 | ±24 | [ |
| Fe(SiCrNi) alloy | 243 | 1123-1323 | ±7-277 | [ |
| Fe (MnSiCrNiCe) alloy | 133.8 | 1123-1323 | ±7-277 | [ |
| Astroloy Ni-based alloy | 270 | 1173-1273 | ±70 | [ |
| Waspaloy Ni-based alloy | 300 | 1173-1273 | ±100 | [ |
| Udimet 720 Ni-based alloy | 250 | 1173-1273 | ±100 | [ |
Table 6. Oxidation activation energies determined from present study and commercial alloys in different oxidation duration and temperature ranges.
| Alloys | Activation energy (kJ mol−1) | Temperature range (K) | Oxidation duration (h) | Refs. |
|---|---|---|---|---|
| 5-Equi | 324.3 | 1323-1373 | ±48 | This work |
| 5-B 40 | 330.9 | 1323-1373 | ±48 | This work |
| 4-B 2013 | 473.9 | 1323-1373 | ±48 | This work |
| Al0.5CoCrFeNi | 143.5 | 1073-1273 | ±72 | [ |
| Al0.6CrFeNi | 291.8 | 1073-1273 | ±100 | [ |
| Al0.6CrFeNiSi0.3 | 270.2 | 1073-1273 | ±100 | [ |
| SS 439 (Ferritic Stainless Steel) | 251.9 | 1123-1073 | ±55 | [ |
| P92 (Martensitic Stainless Steel) | 466.1 | 973-1223 | ±24 | [ |
| Fe(SiCrNi) alloy | 243 | 1123-1323 | ±7-277 | [ |
| Fe (MnSiCrNiCe) alloy | 133.8 | 1123-1323 | ±7-277 | [ |
| Astroloy Ni-based alloy | 270 | 1173-1273 | ±70 | [ |
| Waspaloy Ni-based alloy | 300 | 1173-1273 | ±100 | [ |
| Udimet 720 Ni-based alloy | 250 | 1173-1273 | ±100 | [ |
| [1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [2] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
| [3] |
C.Y. Hsu, T.S. Sheu, J.W. Yeh, S.K. Chen, Wear 268 (2010) 653-659.
DOI URL |
| [4] |
S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433-446.
DOI URL |
| [5] |
X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15 (2007) 357-362.
DOI URL |
| [6] |
N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, J. Alloy. Compd. 628 (2015) 170-185.
DOI URL |
| [7] |
Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 491 (2008) 154-158.
DOI URL |
| [8] |
K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloy. Compd. 728 (2017) 1235-1238.
DOI URL |
| [9] |
A. Munitz, S. Salhov, G. Guttmann, N. Derimow, M. Nahmany, Mater. Sci. Eng. A 742 (2019) 1-14.
DOI URL |
| [10] |
C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Mater. Des. 109 (2016) 425-433.
DOI URL |
| [11] |
K.R. Lim, H.J. Kwon, J.H. Kang, J.W. Won, Y.S. Na, Mater. Sci. Eng. A 771 (2020) 138638.
DOI URL |
| [12] |
W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloy. Compd. 589 (2014) 143-152.
DOI URL |
| [13] |
M.P. Agustianingrum, F.H. Latief, N. Park, U. Lee, Intermetallics 120 (2020) 106757.
DOI URL |
| [14] |
T.M. Butler, M.L. Weaver, J. Alloy. Compd. 674 (2016) 229-244.
DOI URL |
| [15] |
A. Anupam, A. S.M. Ang, K. Guruvidyathri, M. Abbas, D. Sivaprahasam, P. Munroe, C.C. Berndt, B.S. Murty, R.S. Kottada, Corros. Sci. 184 (2021) 109381.
DOI URL |
| [16] |
M.P. Agustianingrum, U. Lee, N. Park, Corros. Sci. 173 (2020) 108755.
DOI URL |
| [17] |
S.F. Frederick, I. Cornet, J. Electrochem. Soc. 102 (1955) 279-284.
DOI URL |
| [18] |
Z. Jiang, W. Chen, Z. Xia, W. Xiong, Z. Fu, Intermetallics 108 (2019) 45-54.
DOI URL |
| [19] | F. Kaya, M. Yeti ¸s, G.İ. Selimoğlu, B. Derin, Eng. Sci. Technol. Int. J. (2021). |
| [20] |
Y. Dong, Z. Yao, X. Huang, F. Du, C. Li, A. Chen, F. Wu, Y. Cheng, Z. Zhang, J. Alloy. Compd. 823 (2020) 153886.
DOI URL |
| [21] |
K.C. Lo, Y.J. Chang, H. Murakami, J.W. Yeh, A.C. Yeh, Sci. Rep. 9 (2019) 1-12.
DOI URL |
| [22] |
X. Cheng, Z. Jiang, D. Wei, J. Zhao, B.J. Monaghan, R.J. Longbottom, L. Jiang, Met. Mater. Int. 21 (2015) 251-259.
DOI URL |
| [23] |
A. Atkinson, Mater. Sci. Technol. 4 (1988) 1046-1051 (United Kingdom).
DOI URL |
| [24] |
G. Laplanche, U.F. Volkert, G. Eggeler, E.P. George, Oxid. Met. 85 (2016) 629-645.
DOI URL |
| [25] | K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 (2013) 4 887-4 897. |
| [26] | Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z.K. Liu, Materials 8 (2018)(Basel). |
| [27] | P. Kofstad, High Temperature Oxidation of Metals, John Wiley and Sons, Inc., New York, 1966. |
| [28] |
A.S. Dorcheh, M. Schütze, M.C. Galetz, Corros. Sci. 130 (2018) 261-269.
DOI URL |
| [29] | P. Šulhánek, M. Drienovský, I. ˇCerniˇ cková, L. Duriška, R. Skaudžius, Ž. Gerhá- tová, M. Palcut, Materials 13 (2020) 3152 (Basel). |
| [30] |
S. Cruchley, H.E. Evans, M.P. Taylor, M.C. Hardy, S. Stekovic, Corros. Sci. 75 (2013) 58-66.
DOI URL |
| [31] | M. Gemmaz, M. Afyouni, A. Mosser, Surf. Sci. 227 (1990) L109-L111. |
| [32] | H. Mehrer, M. Luckabauer, W. Sprengel, Defect Diffus. Forum 333 (2013) 1-25. |
| [33] |
Y. Li, P. Zhang, J. Zhang, Z. Chen, B. Shen, Corros. Sci. 190 (2021) 109633.
DOI URL |
| [34] | J.A. Dean, Lange’s Handbook of Chemistry, 15th ed, McGraw-Hill Professional, New York, 1999. |
| [35] | A.S. Khanna, Handb. Environ. Degrad. Mater. 2 (2018) 117-132. |
| [36] |
Y. Inoue, N. Hiraide, A. Hayashi, K. Ushioda, ISIJ Int. 58 (2018) 1850-1859.
DOI URL |
| [37] |
C. Zhao, Y. Zhou, Z. Zou, L. Luo, X. Zhao, F. Guo, P. Xiao, Corros. Sci. 126 (2017) 334-343.
DOI URL |
| [38] | D. Ko, Y. Shin, J. Weld. Join. 36 (2018) 8-13. |
| [39] |
D. Ko, Y.I. Park, Y. Shin, J. Weld. Join. 38 (2020) 528-534.
DOI URL |
| [40] |
D. Caplan, G.I. Sproule, Oxid. Met. 9 (1975) 459-472.
DOI URL |
| [41] |
J. Lu, Y. Chen, H. Zhang, N. Ni, L. Li, L. He, R. Mu, X. Zhao, F. Guo, Corros. Sci. 166 (2020) 108426.
DOI URL |
| [42] |
T.J. Nijdam, L.P.H. Jeurgens, J.H. Chen, W.G. Sloof, Oxid. Met. 64 (2005) 355-377.
DOI URL |
| [43] |
F. Gesmundo, B. Gleeson, Oxid. Met. 44 (1995) 211-237.
DOI URL |
| [44] |
R. Prescott, M.J. Graham, Oxid. Met. 38 (1992) 233-254.
DOI URL |
| [45] |
V.K. Tolpygo, D.R. Clarke, Mater. High Temp. 17 (20 0 0) 59-70.
DOI URL |
| [46] |
R.R. Adharapurapu, J. Zhu, V.S. Dheeradhada, D.M. Lipkin, T.M. Pollock, Acta Mater. 76 (2014) 449-462.
DOI URL |
| [47] | W. Brandl, H.J. Grabke, D. Toma, J. Krüger, Surf. Coat. Technol. 86-87 (1996) 41-47. |
| [48] |
B. Pint, Solid State ionics 78 (1995) 99-107.
DOI URL |
| [49] | D.B. Miracle, Acta Metall. Mater. 41 (1993) 64 9-6 84. |
| [50] |
H. Li, S. Tao, Z. Zhou, L. Sun, A. Hesnawi, S. Gong, Surf. Coat. Technol. 201 (2007) 6589-6592.
DOI URL |
| [51] | M.P. Brady, I.G. Wright, B. Gleeson, JOM 52 (20 0 0) 16-21. |
| [52] |
J. Lu, J. Huang, Z. Yang, Y. Zhou, Y. Dang, X. Zhao, Y. Yuan, Oxid. Met. 89 (2018) 197-209.
DOI URL |
| [53] | I. Barin, Thermochemical Data of Pure Substances, 3rd ed, VCH Verlagsge- sellschaft mbH, Weinheim, 1995. |
| [54] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
| [55] |
H. Bei, G.M. Pharr, E.P. George, J. Mater. Sci. 39 (2004) 3975-3984.
DOI URL |
| [56] |
R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y.L. Chiu, H. Ding, J. Guo, H. Fu, Acta Mater. 144 (2018) 129-137.
DOI URL |
| [57] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.
DOI URL |
| [58] | S. Abbaszadeh, A. Pakseresht, H. Omidvar, A. Shafiei, Surf. Interf. 21 (2020) 100724. |
| [59] |
L. Chen, Z. Zhou, Z. Tan, D. He, K. Bobzin, L. Zhao, M. Öte, T. Königstein, J. Alloy. Compd. 764 (2018) 845-852.
DOI URL |
| [60] |
A .C.S. Sabioni, A .M. Huntz E.C. Da Luz, M. Mantel C. Haut, Mater. Res. 6 (2003) 179-185.
DOI URL |
| [61] |
J. Yuan, X. Wu, W. Wang, S. Zhu, F. Wang, Materials 7 (2014) 2772-2783 (Basel).
DOI URL |
| [62] | V.F. De Souza, A.J. Araújo, J.L. Do Nascimento Santos, C.A. Della Rovere, A.M. De Sousa Malafaia, Mater. Res. 20 (2017) 365-373. |
| [63] |
J.H. Chen, P.M. Rogers, J.A. Little, Oxid. Met. 47 (1997) 381-410.
DOI URL |
| [1] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
| [2] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
| [3] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
| [4] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
| [5] | Bangyang Zhou, Jian He, Qijie Zhou, Hongbo Guo. Effects of laser shock processing on θ-Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ’+β) two-phase Ni-34Al-0.1Dy alloys [J]. J. Mater. Sci. Technol., 2022, 109(0): 157-166. |
| [6] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [7] | Jie Sun, Chuangwei Liu, Wenhan Kong, Jie Liu, Liangyu Ma, Song Li, Yuanhong Xu. Rational design of FeS2 microspheres as high-performance catalyst for electrooxidation of hydrazine [J]. J. Mater. Sci. Technol., 2022, 110(0): 161-166. |
| [8] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
| [9] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
| [10] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
| [11] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
| [12] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
| [13] | Bingqian Jin, Nannan Zhang, Shuo Yin. Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting [J]. J. Mater. Sci. Technol., 2022, 121(0): 163-173. |
| [14] | Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers [J]. J. Mater. Sci. Technol., 2022, 121(0): 245-255. |
| [15] | Wu Qingfeng, Wang Zhijun, He Feng, Yang Zhongsheng, Li Junjie, Wang Jincheng. Endless recrystallization of high-entropy alloys at high temperature [J]. J. Mater. Sci. Technol., 2022, 128(0): 71-81. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
