J. Mater. Sci. Technol. ›› 2022, Vol. 128: 228-238.DOI: 10.1016/j.jmst.2022.04.030
• Research Article • Previous Articles Next Articles
Sun Hengdaa, Zhang Yingb, Wu Yuea, Zhao Yuea, Zhou Minga, Liu Lieb,*(), Tang Shaolongc, Ji Guangbina,*(
)
Received:
2022-04-06
Revised:
2022-04-19
Accepted:
2022-04-20
Published:
2022-11-20
Online:
2022-11-22
Contact:
Liu Lie,Ji Guangbin
About author:
gbji@nuaa.edu.cn (G. Ji).Sun Hengda, Zhang Ying, Wu Yue, Zhao Yue, Zhou Ming, Liu Lie, Tang Shaolong, Ji Guangbin. Broadband absorption of macro pyramid structure based flame retardant absorbers[J]. J. Mater. Sci. Technol., 2022, 128: 228-238.
Fig. 2. SEM images of (a, d) S1, (b, e) S2, and (c, f) S3; (g) XRD patterns of CNT, APP, S1-S3; (h) FTIR spectra of CNT, APP, S1, S2, and S3; (i) Thermal Gravimetric (TG) spectra of CNT, APP, S1-S3.
Fig. 3. (a-c) SEM images of LDH, (d) XRD pattern of LDH, (e) FTIR spectrum of LDH and its coating, (f) ε′ of LDH with 20 wt.% and 30 wt.% filling ratio, (g) tan δε of LDH with 20 wt.% and 30 wt.% filling ratio, (h) transmission of LDH with 20 wt.% filling ratio, (i) transmission of LDH with 30 wt.% filling ratio.
Fig. 4. Flame retardancy: (a) LOI of samples 1-4, (b) LOI of samples 2, 5, and 6, and (c) LOI of samples 3, 7, and 8. Schematic diagram of 60 s combustion of (d) sample 1, (e) sample 2, (f) sample 5, and (g) sample 6.
Fig. 5. Electromagnetic parameters (a) ε′, (b) μ′, (c) tanδe, and (d) tanδμ of S1-S3. (e) Model of the Pyramid, Prismatic, Circular cone, and Round platform. (f) RL, (g) Re Zin/Z0, and (h) Im Zin/Z0 curves of pyramid model of S1-S3. (i) RL, (j) Re Zin/Z0, and (k) Im Zin/Z0 curves of four models of S1.
Fig. 6. Pyramid parameter optimization: (a) Overall structure of pyramid model, (b) parameter objective of pyramid structural element optimization, (c) transmission principle of the electromagnetic wave in a pyramid structure, (d) RL, (e) Re Zin/Z0, and (f) Im Zin/Z0 curves with different base height (h1) of the periodic structural element of the pyramid. Absorption bandwidth curve of different (g) h1, (h) width, and (i) h of the periodic structural element of the pyramid.
Fig. 7. Oblique incidence of pyramid structure. RCS three-dimensional diagram of (a) board at 4 GHz and (b) pyramid at 4 GHz. (c) RCS curve of board and pyramid at 4 GHz. RCS three-dimensional diagram of (d) board at 8 GHz and (e) pyramid at 8 GHz. (f) RCS curve of board and pyramid at 8 GHz. RL curve and electric field distribution of (g) transverse electric (TE) wave at 0°-80° and (h) transverse electromagnetic (TM) wave at 0°-80°.
[1] | Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou, H. Bian, Z.H. Yang, Y.J. Li, H. L. Lv, S. Adera, X.G. Wang, Nano Micro Lett. 14 (2022) 11. |
[2] |
L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang, Y. Yang, G.B. Ji, Adv. Mater. 34 (2022) 2106195.
DOI URL |
[3] | B. Wen, H.B. Yang, Y. Lin, L. Ma, Y. Qiu, F.F. Hu, Y.N. Zheng, J. Mater. Chem. A 9 (2021) 3567. |
[4] |
B. Li, F.L. Wang, K.J. Wang, J. Qiao, D.M. Xu, Y.F. Yang, X. Zhang, L.F. Lyu, W. Liu, J.R. Liu, J. Mater. Sci. Technol. 104 (2022) 244-268.
DOI URL |
[5] | Q.Q. Huang, G.H. Wang, M. Zhou, J. Zheng, S.L. Tang, G.B. Ji, J. Mater. Sci. Tech- nol. 108 (2022) 90-101. |
[6] |
T.T. Liu, M.Q. Cao, Y.S. Fang, Y.H. Zhu, M.S. Cao, J. Mater. Sci. Technol. 112 (2022) 329-344.
DOI URL |
[7] |
J.Y. Guo, N. Guo, Z.J. Du, C. Zhang, W. Zou, New J. Chem. 45 (2021) 11705.
DOI URL |
[8] |
T.J. Kolibaba, A. Nigam, B.L. Tai, J.C. Grunlan, Macromol. Mater. Eng. 306 (2021) 2100245.
DOI URL |
[9] | Q. Wu, X.Y. Cui, C.Z. Mu, J. Sun, X.Y. Gu, H.F. Li, S. Zhang, Compos. Part A 150 (2021) 106595. |
[10] |
Z.Y. Wang, E.H. Han, F.C. Liu, W. Ke, J. Mater. Sci. Technol. 26 (2010) 75-81.
DOI URL |
[11] |
H. Kadobayashi, H. Hirai, H. Ohfuji, H. Kawamura, M. Muraoka, S. Yoshida, Y. Yamamoto, J. Phys. Chem. A 124 (2020) 10890-10896.
DOI URL |
[12] | B.G.P. Bezerra, L. Bieseki, M.I.S. de Mello, D.R. da Silva, C.B. Rodella, S. Pergher, Materials 14 (2021) 2102 (Basel). |
[13] | M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon N Y 48 (2010) 788-796. |
[14] |
X.X. Wei, Y.L. Pan, Z.W. Chen, J. Eur. Ceram. Soc. 42 (2022) 1522-1529.
DOI URL |
[15] | G.R. Chen, W.H. Tuan, Int. J. Appl. Ceram. Technol. 19 (2022) 1001-1008. |
[16] | X. Liu, P. Wu, P. Wang, T. Wang, L. Qiao, F.S. Li, Chin. Phys. B 29 (2020) 077506. |
[17] |
G.H. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, G.B. Ji, Nano Micro Lett. 14 (2022) 65.
DOI URL |
[18] |
H. Breiss, A. El Assal, R. Benzerga, A. Sharaiha, A. Jrad, A. Harmouch, Mater. Res. Bull. 137 (2021) 111188.
DOI URL |
[19] |
M. Zhang, L.H. Li, X.L. Jian, S. Zhang, Y.Y. Shang, T.T. Xu, S.G. Dai, J.M. Xu, D. Z. Kong, Y. Wang, X.C. Wang, J. Alloy. Compd. 878 (2021) 160396.
DOI URL |
[20] |
J. Zhao, J.L. Zhang, L. Wang, S.S. Lyu, W.L. Ye, B.B. Xu, H. Qiu, L.X. Chen, J.W. Gu, Compos. Part A Appl. Sci. Manuf. 129 (2020) 105714.
DOI URL |
[21] |
Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, R.C. Che, Adv. Funct. Mater. 29 (2019) 1901448.
DOI URL |
[22] |
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 26 (2014) 8120.
DOI URL |
[23] |
H.Q. Zhao, Y. Cheng, X.H. Liang, Y.W. Du, G.B. Ji, Ind. Eng. Chem. Res. 57 (2018) 2155-2164.
DOI URL |
[24] |
J.Q. Sheng, Y. Zhang, L. Liu, B. Quan, N. Zhang, G.B. Ji, J. Alloy. Compd. 809 (2019) 151866.
DOI URL |
[25] | X.Y. Zhu, H.F. Qiu, P. Chen, J.L. LIU, G.Z. Chen, J. Electron. Mater. 9 (2020) 49. |
[26] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[27] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[28] | L. Wang, Z.L. Ma, Y.L. Zhang, H. Qiu, K.P. Ruan, J.W. Gu, Carbon Energy 4 (2022) 200-210. |
[29] | Z. Xiang, X.J. Zhu, Y.Y. Dong, X. Zhang, Y.Y. Shi, W. Lu, J. Mater. Chem. A 9 (2021) 17538. |
[30] | X. Zhang, L. Cai, Z. Xiang, W. Lu, Carbon N Y 184 (2021) 514-525. |
[31] | J. Xu, X. Zhang, Z.B. Zhao, H. Hu, B. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, Small 17 (2021) 2102032. |
[32] | L. Liu, L.B. Kong, W.Y. Yin, Y. Chen, S. Matitsine, IEEE Trans. Electromagn. Com- pat. 53 (2011) 943-949. |
[33] |
T. Kameda, H. Uchida, S. Kumagai, Y. Saito, K. Mizushina, I. Itou, T. Han, T. Yosh- ioka, Chin. J. Chem. Eng. 29 (2021) 131-134.
DOI URL |
[34] | X. Zhang, C. Xu, Z.Y. Zhu, Z. Wang, H. Xie, Int. J. Polym. Anal. Charact. 26 (2021) 517-531. |
[35] | L. Liu, S.M. Matitsine, Y.B. Gan, Electromagnetics 25 (2005) 69-79. |
[36] | J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, G.B. Ji, Carbon N Y 174 (2021) 509-517. |
[37] |
W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, G.B. Ji, Nano Micro Lett. 13 (2021) 102.
DOI URL |
[38] |
F. Wang, W.H. Gu, J.B. Chen, Q.Q. Huang, M.Y. Han, G.H. Wang, G.B. Ji, J. Mater. Sci. Technol. 105 (2021) 92-100.
DOI URL |
[39] |
R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Appl. Phys. Lett. 88 (2006) 033105.
DOI URL |
[40] |
Y.D. Yang, W. Chen, M.R. Liu, Q.M. Zhu, X.L. Liu, B. Zhang, D.P. Chen, X.Y. Liu, K. Zhang, G. Tang, J. Sol Gel Sci. Technol. 98 (2021) 212-223.
DOI URL |
[41] |
J.J. Cheng, S.S. Niu, D. Ma, Y. Zhou, F. Zhang, W.J. Qu, D. Wang, S.X. Li, X. L. Zhang, X.Q. Chen, J. Appl. Polym. Sci. 137 (2020) 49591.
DOI URL |
[42] |
T. Hu, Y.J. Ouyang, Z.H. Xie, L. Wu, J. Mater. Sci. Technol. 92 (2021) 225-235.
DOI URL |
[43] |
W. An, J.Z. Ma, Q.N. Xu, Appl. Surf. Sci. 551 (2021) 149409.
DOI URL |
[44] | B.R. Yan, X.M. Hu, W.M. Cheng, Y.Y. Zhao, W. Wang, Y.T. Liang, T.Y. Liu, Y. Feng, D. Xue, Fuel 297 (2021) 120768. |
[45] | Z.W. Ma, X.C. Liu, X.D. Xu, L. Liu, B. Yu, C. Maluk, G.B. Huang, H. Wang, P.A. Song, ACS Nano 15 (2021) 11667-11680. |
[46] |
R.W. Shu, N.N. Li, X.H. Li, J.J. Sun, J. Colloid Interfaces Sci. 606 (2022) 1918-1927.
DOI URL |
[47] |
M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, J. Yuan, Mater. Sci. Eng. R 145 (2021) 100627.
DOI URL |
[48] |
Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, R. C. Che, Adv. Mater. 34 (2022) 2107538.
DOI URL |
[49] |
Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li, J. Zheng, G.B. Ji, Small Sci. 2 (2022) 2100077.
DOI URL |
[50] | M.N. Prabhakar, J. Song, Cellulose 27 (2020) 8087-8103. |
[51] |
M.T. Wang, G.Q. Xiao, C.L. Chen, C.Y. Chen, Z.W. Yang, F. Zhong, Y.Z. Liu, R. Zou, Colloids Surf. A Physicochem. Eng. Asp. 628 (2021) 127368.
DOI URL |
[52] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401.
DOI URL |
[53] |
R. Peymanfar, A. Mohammadi, S. Javanshir, Compos. Commun. 21 (2020) 100421.
DOI URL |
[54] | P.T. Xie, Y.F. Li, Q. Hou, K.Y. Sui, C.Z. Liu, X.Y. Fu, J.X. Zhang, V. Murugadoss, J. C. Fan, Y.P. Wang, R.H. Fan, Z.H. Guo, J. Mater. Chem. C 8 (2020) 3029-3039. |
[55] |
R. Peymanfar, M. Rahmanisaghieh, Mater. Res. Express 6 (2019) 105025.
DOI URL |
[56] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 4 86-4 90.
DOI URL |
[57] | C. Han, M. Zhang, W.Q. Cao, M.S. Cao, Carbon N Y 171 (2021) 953-962. |
[58] |
L. Qiao, T. Wang, Z.L. Mei, X.L. Li, W.B. Sui, L.Y. Tang, F.S. Li, Chin. Phys. Lett. 33 (2016) 027502.
DOI URL |
[59] |
F. Wang, W.H. Gu, J.B. Chen, Y. Wu, M. Zhou, S.L. Tang, X.Z. Cao, P. Zhang, G.B. Ji, Nano Res. 15 (2022) 3720-3728.
DOI URL |
[60] |
R.W. Shu, X.H. Li, K.H. Tian, J.J. Shi, Compos. Part B Eng. 228 (2022) 109423.
DOI URL |
[61] | J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu, M. Wang, Small 8 (2012) 1214-1221. |
[62] |
J.H. Wang, J.G. Miao, Y.J. Yang, Y.M. Chen, IEEE Trans. Antennas Propag. 56 (2008) 2656-2663.
DOI URL |
[63] |
Y.G. Xu, D.L. Zheng, B. Wang, T. Liu, L. Zhou, Mater. Sci. Forum 976 (2020) 25-30.
DOI URL |
[64] | H. Sayed, T.F. Krauss, A.H. Aly, Optik 219 (2020) 165160 (Stuttg). |
[1] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[2] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[3] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[4] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[5] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[6] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
[7] | Siyao Cheng, Cheng Zhang, Hao Wang, Jinrui Ye, Yan Li, Qiu Zhuang, Wei Dong, Aming Xie. Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application [J]. J. Mater. Sci. Technol., 2022, 119(0): 37-44. |
[8] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[9] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[10] | Zhang Yunfei, Li Yulong, Wei Mengmeng, Yang Dengtao, Zhang Qiuyu, Zhang Baoliang. Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 128(0): 148-159. |
[11] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[12] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[13] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[14] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
[15] | Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 215-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||