J. Mater. Sci. Technol. ›› 2022, Vol. 127: 29-47.DOI: 10.1016/j.jmst.2022.02.047
• Review Article • Previous Articles Next Articles
Nihan Chena,c, Chunlin Hea,b,c,d,*(), Siping Panga,d,*(
)
Received:
2022-01-18
Revised:
2022-02-26
Accepted:
2022-02-27
Published:
2022-11-10
Online:
2022-11-10
Contact:
Chunlin He,Siping Pang
About author:
pangsp@bit.edu.cn (S. Pang)Nihan Chen, Chunlin He, Siping Pang. Additive manufacturing of energetic materials: Tailoring energetic performance via printing[J]. J. Mater. Sci. Technol., 2022, 127: 29-47.
Method | Related Energetic Materials | Advantages | Disadvantages |
---|---|---|---|
Ink Jetting | Mostly nanothermites | Ability of dealing with high concentration solutions | The poor coordination of reliable droplet placement Limited to high voltage insensitive materials |
Stereolithography (SLA) | Mostly monomolecular CHNO compounds | High printing resolution Ability of prinitng Complex geometry | Unavailable for dark colored particles Photocurable resins may degrade the performance |
Fused Deposition Modeling (FDM) | Limited nanothermites | No additional solvent is required Ability of priniting solid primitive materials | Poor consistency of the prints Irregular distribution of voids Low solid containing proportion |
Direct Ink Writing (DIW) | Mostly nanothermites Mostly monomolecular CHNO compounds | Reduced probability of clogging nozzles | High shrinkage during the curing process Environmentally unfriendly use of solvent |
Electrospray Deposition (ESD) | Mostly nanothermites Mostly monomolecular CHNO compounds | Higher dispersibility and processability of metal particles Ability of fabricating core-shell structure | Limited to electrostatic insensitive energetic materials |
Table 1. Comparison of relevant methods for prinitng energetic materials.
Method | Related Energetic Materials | Advantages | Disadvantages |
---|---|---|---|
Ink Jetting | Mostly nanothermites | Ability of dealing with high concentration solutions | The poor coordination of reliable droplet placement Limited to high voltage insensitive materials |
Stereolithography (SLA) | Mostly monomolecular CHNO compounds | High printing resolution Ability of prinitng Complex geometry | Unavailable for dark colored particles Photocurable resins may degrade the performance |
Fused Deposition Modeling (FDM) | Limited nanothermites | No additional solvent is required Ability of priniting solid primitive materials | Poor consistency of the prints Irregular distribution of voids Low solid containing proportion |
Direct Ink Writing (DIW) | Mostly nanothermites Mostly monomolecular CHNO compounds | Reduced probability of clogging nozzles | High shrinkage during the curing process Environmentally unfriendly use of solvent |
Electrospray Deposition (ESD) | Mostly nanothermites Mostly monomolecular CHNO compounds | Higher dispersibility and processability of metal particles Ability of fabricating core-shell structure | Limited to electrostatic insensitive energetic materials |
Fig. 1. (a) Droplet formation of piezoelectric nozzles. (b) Schematic illustration of ink jetting mechanism. Adapted with permission. Copyright 2017, AIP publishing [48].
Fig. 3. (a) Design pattern of printing RDX samples by SLA. (b) Photograph of printed samples. Adapted with permission. Copyright 2020, ELSEVIER publishing [61].
Fig. 5. (a) Graphical representation of the FDM manufacturing process. (b) Printing the PVDF/PMMA/nAl composites. (c) The completed sample side view. (d) The completed print sample side view. Adapted with permission. Copyright 2018, Royal Society of Chemistry publishing [73].
Empty Cell | PVDF | Viton A | THV |
---|---|---|---|
Molecular weight | 534,000 | - | - |
Density (g cm−3) | ∼1.78 | >1.8 | 1.9-2.0 |
Melting point (°C) | 177 | - | - |
Fluorine (wt.%) | 59.4 | 66 | 73 |
Hydrogen (wt.%) | 3.1 | 1.9 | 0.4 |
Carbon (wt.%) | 37.5 | 32.1 | 26.4 |
Table 2. Physiochemical properties of the three polymers.
Empty Cell | PVDF | Viton A | THV |
---|---|---|---|
Molecular weight | 534,000 | - | - |
Density (g cm−3) | ∼1.78 | >1.8 | 1.9-2.0 |
Melting point (°C) | 177 | - | - |
Fluorine (wt.%) | 59.4 | 66 | 73 |
Hydrogen (wt.%) | 3.1 | 1.9 | 0.4 |
Carbon (wt.%) | 37.5 | 32.1 | 26.4 |
Fig. 7. (a) 3-D printing process. (b, c) CAD models. (d, e) 3-D printed composite propellant grains. Adapted with permission. Copyright 2018, ARC publishing [106].
Fig. 8. (a) Longitudinal deposition of multilayer samples analyzed through XCT. (b) Transverse deposition of multilayer samples analyzed through XCT. Adapted with permission. Copyright 2021, Elsevier publishing [108]. (c) Micro-CT cross-section of HTPB binder strand that was 3D printed without UV. (d) Micro-CT cross-section of UV-curable HTPB strand that was 3D printed with UV. Adapted with permission. Copyright 2019, ELSEVIER publishing [29].
Fig. 10. (a) Schematic illustration of ESD mechanism. Adapted with permission. Copyright 2020, ELSEVIER publishing [30]. (b) Schematic illustration double-nozzle systems. Adapted with permission. Copyright 2018, ELSEVIER publishing [140].
Fig. 11. Schematic illustration of the possible reaction mechanism of Al/NC/AP composites. Adapted with permission. Copyright 2017, ELSEVIER publishing [142].
Fig. 13. Viton and hollow microsphere structures obtained via the coaxial needle of the ESD method. Adapted with permission. Copyright 2020, ELSEVIER publishing [170].
[1] |
S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Int. J. Adv. Manuf. Technol. 67 (2013) 1191-1203.
DOI URL |
[2] |
D.R. Eyers, A.T. Potter, Comput. Ind. 92-93 (2017) 208-218.
DOI URL |
[3] |
D.R. Eyers, A.T. Potter, J. Gosling, M.M. Naim, Int. J. Prod. Oper. Manag. 38 (12) (2018) 2313-2343.
DOI URL |
[4] |
A. Nouri, A.R. Shirvan, Y. Li, C. Wen, J. Mater. Sci. Technol. 94 (2021) 196-215.
DOI URL |
[5] |
Z. Liu, D. Zhao, P. Wang, M. Yan, C. Yang, Z. Chen, J. Lu, Z. Lu, J. Mater. Sci. Technol. 100 (2022) 224-236.
DOI URL |
[6] | S. Chou, W. Yang, K. Chua, J. Li, K. Zhang, Appl. Energy. 881 (2011) 1-16. |
[7] |
C. Rossi, D. Estève, Sens. Actuators. 120 (2) (2005) 297-310.
DOI URL |
[8] | N. Chigier, T. Gemci, 41st Aerospace Sciences Meeting and Exhibit, AIAA 2003-670, 2003. |
[9] |
K. Zhang, C. Rossi, M. Petrantoni, N. Mauran, J. Microelectromech. Syst. 17 (4) (2008) 832-836.
DOI URL |
[10] |
C.S. Staley, C.J. Morris, R. Thiruvengadathan, S.J. Apperson, K. Gangopadhyay, S. Gangopadhyay, J. Micromech. Microeng. 21 (11) (2011) 115015.
DOI URL |
[11] |
B. Zuo, J. Zhang, S. Chen, Q. Liang, X. Qiao, F. Zhao, P. Liu, Q. Yan, Adv. Compos. Hybrid Mater. 2 (2) (2019) 361-372.
DOI URL |
[12] |
H. Yang, Y. Liu, H. Huang, Y. Zhao, K. Song, H. Wang, W Xie, Y. Cheng, X. Fan, J. Therm. Anal. Calorim. 137 (5) (2019) 1615-1620.
DOI URL |
[13] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2) (2019) 242-269.
DOI URL |
[14] |
J. Li, X. An, J. Liang, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 117 (1) (2022) 79-98.
DOI URL |
[15] | R.D. Sochol, E. Sweet, C.C. Glick, S. Wu, C. Yang, M. Restaino, L. Lin, Microelec-tron. Eng. 189 (2018) 52-68. |
[16] |
J. Guo, F. Zeng, J. Guo, X. Ma, J. Mater. Sci. Technol. 37 (2020) 96-103.
DOI URL |
[17] |
C. Huang, G. Jian, J.B. DeLisio, H. Wang, M.R. Zachariah, Adv. Eng. Mater. 17 (1) (2015) 95-101.
DOI URL |
[18] | D.I.A. Millar, Energetic Materials at Extreme Conditions, Springer, Berlin Hei-delberg, 2012. |
[19] |
H. Gao, J.M. Shreeve, Chem. Rev. 111 (11) (2011) 7377-7436.
DOI URL |
[20] | L.T. DeLuca, T. Shimada, V.P. Sinditskii, M. Calabro, A.P. Manzara, Chemical Rocket Propulsion, Berlin Heidelberg, 2017, pp. 3-59. |
[21] |
W. Liu, W. Liu, S. Pang, RSC Adv. 7 (6) (2017) 3617-3627.
DOI URL |
[22] | S.A.A. Shams, J.W. Bae, J.N. Kim, H.S. Kim, T. Lee, C.S. Lee, J. Mater. Sci. Tech-nol. 115 (2022) 115-128. |
[23] |
J. Su, X. Ji, J. Liu, J. Teng, F. Jiang, D. Fu, H. Zhang, J. Mater. Sci. Technol. 107 (2022) 136-148.
DOI URL |
[24] |
Y. Li, D.S. Martín, J. Wang, C. Wang, W. Xu, J. Mater. Sci. Technol. 91 (2021) 200-214.
DOI URL |
[25] |
K. Markandan, R. Lim, P. Kumar. Kanaujia, I. Seetoh, M.R. Mohd Rosdi, Z.H. Tey, J.S. Goh, Y.C. Lam, C. Lai, J. Mater. Sci. Technol. 47 (2020) 243-252.
DOI URL |
[26] | L. Zhou, J. Fu, Y. He, Adv. Funct. Mater. 30 (28) (2020) 243-252. |
[27] |
R.D. Farahani, M. Dube, D. Therriault, Adv. Mater. 28 (28) (2016) 5794-5821.
DOI URL |
[28] |
J. Dai, F. Wang, C. Ru, J. Xu, C. Wang, W. Zhang, Y. Ye, R. Shen, J. Phys. Chem. C 122 (18) (2018) 10240-10247.
DOI URL |
[29] | M.S. McClain, I.E. Gunduz, S.F. Son, Proc. Combust. Inst. 37 (3) (2019) 3135-3142. |
[30] |
C. Huang, Z. Yang, Y. Li, B. Zheng, Q. Yan, L. Guan, G. Luo, S. Li, F. Nie, Chem. Eng. J. 383 (2020) 123110.
DOI URL |
[31] |
S. Sevilia, M. Yong, D. Grinstein, L. Gottlieb, Y. Eichen, Macromol. Mater. Eng. 304 (6) (2019) 1900018.
DOI URL |
[32] |
T. Liang, H. Zhang, H. Pan, Y. Zhao, J. Mater. Sci. Technol. 115 (2022) 221-231.
DOI |
[33] |
D. Wu, W. Ren, N. Y, J. Yang, J. Wang, J. Mater. Sci. Technol. 91 (2021) 168-177.
DOI URL |
[34] |
C. Zhang, X. Zeng, J. Cheng, Y. Wang, J. Mater. Sci. Technol. 87 (2021) 101-107.
DOI URL |
[35] |
F. Yuan, F. Han, Y. Zhang, A. Muhammad, W. Guo, J. Ren, C. Liu, H. Gu, G. Li, G. Yuan, J. Mater. Sci. Technol. 98 (2022) 44-50.
DOI URL |
[36] |
F. Yuan, G. Li, F. Han, Y. Zhang, A. Muhammad, W. Guo, J. Ren, C. Liu, H. Gu, G. Yuan, J. Mater. Sci. Technol. 81 (2021) 236-239.
DOI URL |
[37] | J.Y. Ahn, J.H. Kim, J.M. Kim, D.W. Lee, J.K. Park, D. Lee, S.H. Kim, Powder Tech-nol 241 (2013) 67-73. |
[38] |
A. Kanti Sikder, S. Reddy, Propellants Explos. Pyrotech. 38 (1) (2013) 14-28.
DOI URL |
[39] | G. Steinhauser, T.M. Klapotke, Angew. Chem. Int. EdEngl. 47 (18) (2008) 3330-3347. |
[40] |
H. Wang, M. Rehwoldt, D.J. Kline, T. Wu, P. Wang, M.R. Zachariah, Combust. Flame. 201 (2019) 181-186.
DOI URL |
[41] |
I. Jasiuk, D.W. Abueidda, C. Kozuch, S. Pang, F. Su, J. McKittrick, JOM 70 (3) (2018) 275-283.
DOI URL |
[42] |
K. Wang, K. Amin, Z. An, Z. Cai, H. Chen, H. Chen, Y. Dong, X. Feng, W. Fu, J. Gu, Y. Han, D. Hu, R. Hu, D. Huang, F. Huang, F. Huang, Y. Huang, J. Jin, X. Jin, Q. Li, T. Li, Z. Li, Z. Li, J. Liu, J. Liu, S. Liu, H. Peng, A. Qin, X. Qing, Y. Shen, J. Shi, X. Sun, B. Tong, B. Wang, H. Wang, L. Wang, S. Wang, Z. Wei, T. Xie, C. Xu, H. Xu, Z.-K. Xu, B. Yang, Y. Yu, X. Zeng, X. Zhan, G. Zhang, J. Zhang, M. Zhang, X. Zhang, X. Zhang, Y. Zhang, Y. Zhang, C. Zhao, W. Zhao, Y. Zhou, Z. Zhou, J. Zhu, X. Zhu, B. Tang, Mater. Chem. Front. 4 (7) (2020) 1803-1915.
DOI URL |
[43] |
A. Wagner, A.M. Kreuzer, L. Goepperl, L. Schranzhofer, C. Paulik, Eur. Polym. J. 115 (2019) 325-334.
DOI |
[44] |
F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, Nano Energy 40 (2017) 418-431.
DOI URL |
[45] |
J. Kim, J. Shim, C. Maeng, Y. Kim, J. Ahn, M. Kwak, S. Hong, H. Cho, J. Nanosci. Nanotechnol. 13 (8) (2013) 5586-5589.
DOI URL |
[46] |
J. Park, J. Lee, D.J. Kim, K. Hwang, J. Kim K. Han, J. Korean Ceram. Soc. 56 (5) (2019) 461-467.
DOI URL |
[47] | Y. Guo, S.I. Mishra, in: A Predictive Control Algorithm for Layer-to-layer Ink-jet 3D Printing, Institute of Electrical and Electronics Engineers Inc., Atlanta Georgia USA, 2016, pp. 833-838. |
[48] |
A.K. Murray, T. Isik, V. Ortalan, I.E. Gunduz, S.F. Son, G.T.C. Chiu, J.F. Rhoads, J. Appl. Phys. 122 (18) (2017) 184901.
DOI URL |
[49] |
T. Han, E. Liu, J. Li, N. Zhao, C. He, J. Mater. Sci. Technol. 46 (2020) 21-32.
DOI URL |
[50] |
Q. Li, S. Zhao, X. Bao, Y. Zhang, Y. Zhu, C. Wang, Y. Lan, Y. Zhang, T. Xia, J. Mater. Sci. Technol. 52 (2020) 1-11.
DOI URL |
[51] |
K.B. Plantier, M.L. Pantoya, A.E. Gash, Combust. Flame. 140 (4) (2005) 299-309.
DOI URL |
[52] | M. Schoenitz, T.S. Ward, E.L. Dreizin, Proc. Combust. Inst. 30 (2005) 2071-2078. |
[53] | A.H. Kinsey, K. Slusarski, S. Sosa, T.P. Weihs, ACS Appl. Mater.Interfaces 9 (26) (2017) 22026-22036. |
[54] | M. Petrantoni, C. Rossi, L. Salvagnac, V. Conedera, A. Esteve, C. Tenailleau, P. Alphonse, Y.J. Chabal, J. Appl. Phys. 108 (8) (2010) 832. |
[55] |
R.M. Verkouteren, G. Gillen, D.W. Taylor, Rev. Sci. Instrum. 77 (8) (2006) 085104.
DOI URL |
[56] | A.K. Murray, W.A. Novotny, T.J. Fleck, I.E. Gunduz, S.F. Son, G.T.C. Chiu, J.F. Rhoads, Addit. Manuf. 22 (2018) 69-74. |
[57] | Y. He, X. Guo, Y. Long, G. Huang, X. Ren, C. Xu, C. An, Micromachines (Basel) 11 (4) (2020) 415. |
[58] |
A.C. Ihnen, A.M. Petrock, T. Chou, P.J. Samuels, B.E. Fuchs, W.Y. Lee, Appl. Surf. Sci. 258 (2) (2011) 827-833.
DOI URL |
[59] |
I. Uiiah, L. Cao, W. Cui, Q. Xu, R. Yang, K. Tang, X. Zhang, J. Mater. Sci. Technol. 88 (2021) 99-108.
DOI URL |
[60] |
F.P.W. Melchels, J. Feijen, D. Grijpma, Biomaterials 31 (24) (2010) 6121-6130.
DOI PMID |
[61] |
W. Yang, R. Hu, L. Zheng, G. Yan, W. Yan, Mater. Des. 192 (2020) 108761.
DOI URL |
[62] |
K. Lee, S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, L. Lu, Biomacro-molecules 8 (4) (2007) 1077-1084.
DOI URL |
[63] |
M.N. Cooke, J.P. Fisher, D. Dean, C. Rimnac, A.G. Mikos, J. Biomed. Mater. Res. Part B 64B (2) (2003) 65-69.
DOI URL |
[64] |
M. Popal, J. Volk, G. Leyhausen, W. Geurtsen, Dent. Mater. 34 (12) (2018) 1783-1796.
DOI URL |
[65] |
V.E. Salgado, M.M. Borba, L.M. Cavalcante, R.R. de Moraes, L.F. Schneider, J. Esthet. Restor. Dent. 27 (2015) S41-S48.
DOI URL |
[66] |
M.H. Straathof, C.A. Driel, J.N.J. Lingen, B.L.J. Ingenhut, A.T. Cate, H.H. Maalderink, Propellants Explos. Pyrotech. 45 (1) (2019) 36-52.
DOI URL |
[67] |
M. Li, W. Yang, M. Xu, R. Hu, L. Zheng, Mater. Des. 207 (2021) 109891.
DOI URL |
[68] |
N.J. Castro, R. Patel, L. J, G. Zhang, Cell. Mol. Bioeng. 8 (3) (2015) 416-432.
DOI URL |
[69] |
G. Kollamaram, D.M. Croker, G.M. Walker, A. Goyanes, A.W. Basit, S. Gaisford, Int. J. Pharm. 545 (1-2) (2018) 144-152.
DOI URL |
[70] | T.J. Fleck, A.K. Murray, I.E. Gunduz, S.F. Son, G.T.C. Chiu, J.F. Rhoads, Addit. Manuf. 17 (2017) 176-182. |
[71] |
W.J. Chong, S. Shen, Y. Li, A. Trinchi, D. Pejak, I. Kyratzis, A. Sola, C. Wen, J. Mater. Sci. Technol. 111 (2022) 120-151.
DOI URL |
[72] |
A. Afshar, D. Mihut, J. Mater. Sci. Technol. 53 (2020) 185-191.
DOI |
[73] | J.A. Bencomo, S.T. Iacono, J. McCollum, J. Mater. Chem. A. 26 (6) (2018) 12308-12315. |
[74] |
D.N. Collard, T.J. Fleck, J.F. Rhoads, S.F. Son, Combust. Flame. 223 (2021) 110-117.
DOI URL |
[75] |
H. Wang, J. Shen, D.J. Kline, N. Eckman, N.R. Agrawal, T. Wu, P. Wang, M.R. Zachariah, Adv. Mater. 31 (23) (2019) 1806575.
DOI URL |
[76] |
H. Wang, J.B. DeLisio, G. Jian, W. Zhou, M.R. Zachariah, Combust. Flame. 162 (7) (2015) 2823-2829.
DOI URL |
[77] |
J. Song, T. Guo, M. Yao, J. Chen, W. Ding, F. Bei, Y. Mao, Z. Yu, J. Huang, X. Zhang, Q. Yin, S. Wang, Vacuum. 176 (2020) 109339.
DOI URL |
[78] |
N. Wang, Y. Hu, X. Ke, L. Xiao, X. Zhou, S. Peng, G. Hao, W. Jiang, Chem. Eng. J. 379 (2020) 122330.
DOI URL |
[79] |
Y. Hu, B. Tao, D. Hao, R. Fan, D. Xia, K. Lin, A. Pang, Y. Yang, Chem. Eng. Sci. 222 (2020) 115701.
DOI URL |
[80] |
J. Shen, Z. Qiao, J. Wang, G. Yang, J. Chen, Z. Li, X. Liao, H. Wang, M.R. Zachariah, Thermochim. Acta 666 (2018) 60-65.
DOI URL |
[81] | H. Wang, J.B. DeLisio, S. Holdren, T. Wu, Y. Yang, J. Hu, M.R. Zachariah, Adv. Eng. Mater. 202 (2018) 1700574. |
[82] |
K. Gao, G. Li, L. Yunjun, L. Wang, L. Shen, G. Wang, J. Therm. Anal. Calorim. 118 (2014) 43-49.
DOI URL |
[83] |
J. McCollum, A.M. Morey, S.T. Iacono, Mater. Des. 134 (2017) 64-70.
DOI URL |
[84] |
A.R. Studart, Chem. Soc. Rev. 45 (2) (2016) 359-376.
DOI PMID |
[85] | G. Zhou, Z. Zhao, Y. Zhang, W. Liu, Z. Yang, D. Jia, Y. Zhou, J. Mater. Sci. Tech-nol. 111 (2022) 49-56. |
[86] |
Q. Li, C. An, X. Han, C. Xu, C. Song, B. Ye, B. Wu, J. Wang, Propellants Explos. Pyrotech. 43 (6) (2018) 533-537.
DOI URL |
[87] |
H. Guo, S. Xu, H. Gao, X. Geng, C. An, C. Xu, Q. Li, S. Wang, B. Ye, J. Wang, Propellants Explos. Pyrotech. 44 (8) (2019) 935-940.
DOI URL |
[88] | D. Wang, B. Zheng, C. Guo, B. Gao, J. Wang, G. Yang, H. Huang, F. Nie, RSC Adv. 113 (6) (2016) 112325-112331. |
[89] |
T. An, K. Hwang, J. Kim, J. Kim, Ceram. Int. 46 (5) (2020) 6469-6476.
DOI URL |
[90] |
A. Wolf, P.L. Rosendahl, U. Knaack, Autom. Constr. 133 (2022) 103956.
DOI URL |
[91] |
W. Wang, X. Bai, L. Zhang, S. Jing, C. Shen, R. He, Ceram. Int. 48 (3) (2021) 3895-3903.
DOI URL |
[92] |
R.R. Kohlmeyer, A.J. Blake, J.O. Hardin, E.A. Carmona, J. Carpena-Nunez, B. Maruyama, J.D. Berrigan, H. Huang, M.F. Durstock, J. Mater. Chem. A. 4 (43) (2016) 16856-16864.
DOI URL |
[93] |
A. Shahzad, I. Lazoglu, Compos. B. Eng. 225 (2021) 109249.
DOI URL |
[94] |
L. Li, H. Tan, X. Yuan, H. Ma, Z. Ma, Y. Zhao, J. Zhao, X. Wang, D. Chen, Y. Dong, Ceram, Int 47 (15) (2021) 21161-21166.
DOI URL |
[95] | D. Ravichandran, W. Xu, M. Kakarla, S. Jambhulkar, Y. Zhu, K. Song, Addit. Manuf. 47 (2021) 102322. |
[96] | I.A. Perales-Martinez, L.F. Velasquez-Garcia, Nanotechnology 30 (49) (2019) 12. |
[97] |
E. Ghafar-Zadeh, M. Sawan, D. Therriault, Sens, Actuators A 134 (1) (2007) 27-36.
DOI URL |
[98] |
N. Elahpour, F. Pahlevanzadeh, M. Kharaziha, H.R. Bakhsheshi-Rad, S. Ramakr-ishna, F. Berto, Int. J. Pharm. 597 (2021) 120301.
DOI URL |
[99] |
M.E. Culica, A. Chibac-Scutaru, T. Mohan, S. Coseri, Biosens. Bioelectron. 182 (2021) 113170.
DOI URL |
[100] |
T.N.H. Nguyen, J.K. Nolan, H. Park, S. Lam, M. Fattah, J.C. Page, H. Joe, M.B.G. Jun, H. Lee, S.J. Kim, R. Shi, H. Lee, Biosens. Bioelectron. 131 (2019) 257-266.
DOI PMID |
[101] |
S.B. Balani, S.H. Ghaffar, M. Chougan, E. Pei, E. şahin, Results. Eng. 11 (20s21) 100257.
DOI URL |
[102] | W. Zhao, T. Zhang, L. Zhang, L. Yang, Z. Zhou, J. Ind. Eng. Chem. 38 (2016) 73-81. |
[103] |
C. Vijay, P.A. Ramakrishna, Combust. Flame. 217 (2020) 321-330.
DOI URL |
[104] | L.K. Zhang, Y.G. Yu, D.Y. Liu, X. Lu, J. Energetic Mater. 23 (2015) 253-257. |
[105] | J. Yuan, J. Liu, Y. Zhou, Y. Zhang, K. Cen, J. Therm. Anal. Calorim. (2020) 3935-3944. |
[106] |
R.A. Chandru, N. Balasubramanian, C. Oommen, B.N. Raghunandan, J. Propul. Power. 34 (4) (2018) 1090-1093.
DOI URL |
[107] |
H. Arisawa, T.B. Brill, Combust. Flame. 106 (1-2) (1996) 131-143.
DOI URL |
[108] |
S. Garino, P. Antonaci, D. Pastrone, M. Sangermano, F. Maggi, Acta Astronaut 182 (2021) 58-65.
DOI URL |
[109] |
S.A. El-Sayed, J. Anal. Appl. Pyrolysis. 161 (2021) 105364.
DOI URL |
[110] |
Y. Fu, X. Wang, Y. Zhu, B. Xu, Z. Liu, L. Chen, X. Liao, Arabian J. Chem. 15 (1) (2022) 103466.
DOI URL |
[111] |
W. Liang, J. Wang, H. Liu, Z. Meng, L. Qiu, S. Wang, Powder Technol 395 (2022) 732-742.
DOI URL |
[112] |
W. Dunju, G. Changping, W. Ruihao, Z. Baohui, G. Bing, N. Fude, J. Mater. Sci. 55 (7) (2019) 2836-2845.
DOI URL |
[113] |
J. Wang, C. Xu, C. An, C. Song, B. Liu, B. Wu, X. Geng, Propellants Explos. Pyrotech. 42 (10) (2017) 1139-1142.
DOI URL |
[114] | C. Song, C. An, B. Ye, Q. Li, S. Wang, J. Wang, J. Energetic Mater. 26 (12) (2018) 1014-1018. |
[115] | H. Li, J. Wang, C. An, Cent. Eur. J. Energetic Mater. 11 (2) (2014) 237-255. |
[116] |
L.T. DeLuca, L. Galfetti, F. Maggi, G. Colombo, L. Merotto, M. Boiocchi, C. Para-van, A. Reina, P. Tadini, L. Fanton, Acta Astronaut 92 (2) (2013) 150-162.
DOI URL |
[117] |
H. Abusaidi, M. Ghorbani, H.R. Ghaieni, Propellants Explos. Pyrotech. 42 (6) (2017) 671-675.
DOI URL |
[118] |
N. Jafari, B. Arab, N. Zekri, R. Fareghi-Alamdari, Propellants Explos. Pyrotech. 45 (4) (2019) 615-620.
DOI URL |
[119] |
T. Cheng, Des. Monomers Polym. 22 (1) (2019) 54-65.
DOI URL |
[120] |
K. Hori, M. Kimura, Propellants Explos. Pyrotech. 21 (3) (1996) 160-165.
DOI URL |
[121] |
S. Pisharath, H.G. Ang, Polym. Degrad. Stab. 92 (7) (2007) 1365-1377.
DOI URL |
[122] |
Q. Li, C. An, J. Peng, C. Xu, H. Guo, S. Wang, B. Ye, J. Wang, Propellants Explos. Pyrotech. 44 (11) (2019) 1432-1439.
DOI URL |
[123] | S. Kong, D. Liao, Y. Jia, C. An, C. Li, B. Ye, B. Wu, J. Wang, H. Guo, Z. Hong, Def. Technol. 18 (1) (2020) 140-147. |
[124] |
A.K. Hussein, A. Elbeih, S. Zeman, RSC Adv. 8 (31) (2018) 17272-17278.
DOI URL |
[125] |
C. Xu, C. An, Y. He, Y. Zhang, Q. Li, J. Wang, Propellants Explos. Pyrotech. 43 (8) (2018) 754-758.
DOI URL |
[126] | A.Y. Dolgoborodov, V.G. Kirilenko, M.A. Brazhnikov, L.I. Grishin, M.L. Kuskov, G.E. Valyano, Def. Technol. 18 (2) (2021) 194-204. |
[127] | P. Gibot, F. Oudot, B. Lallemand, F. Schnell, D. Spitzer, Energ. Mater. Front. 2 (3) (2021) 167-173. |
[128] |
H. Nie, L.P. Tan, S. Pisharath, H.H. Hng, Chem. Eng. J. 414 (2021) 128786.
DOI URL |
[129] |
V. Goetz, P. Gibot, D. Spitzer, Chem. Eng. J. 427 (2022) 131611.
DOI URL |
[130] |
M.S. McClain, A. Afriat, J.F. Rhoads, I.E. Gunduz, S.F. Son, Propellants Explos. Pyrotech. 45 (6) (2020) 853-863.
DOI URL |
[131] | M.M. Durban, A.M. Golobic, E.V. Bukovsky, A.E. Gash, K.T. Sullivan, Adv. Mater. Technol. 312 (2018) 1800120. |
[132] |
J. Shen, H. Wang, D.J. Kline, Y. Yang, X. Wang, M. Rehwoldt, T. Wu, S. Holdren, M.R. Zachariah, Combust. Flame. 215 (2020) 86-92.
DOI URL |
[133] |
J. Xu, Y. Chen, W. Zhang, Z. Zheng, C. Yu, J. Wang, C. Song, J. Chen, X. Lei, K. Ma, Combust. Flame. 236 (2022) 111747.
DOI URL |
[134] |
Y. Mao, L. Zhong, X. Zhou, D. Zheng, X. Zhang, T. Duan, F. Nie, B. Gao, D. Wang, Adv. Eng. Mater. 21 (12) (2019) 1900825.
DOI URL |
[135] | C. Huang, J. Xu, X. Tian, J. Liu, L. Pan, Z. Yang, F. Nie, Cryst. Growth Des. 184 (2018) 2121-2128. |
[136] |
J. Yao, B. Li, L. Xie, J. Peng, J. Energ. Mater. 36 (2) (2018) 223-235.
DOI URL |
[137] | A.P. Taylor, L.F. Velasquez-Garcia, Nanotechnology 26 (50) (2015) 8. |
[138] | H. Kim, H. Lee, H. Lee, Jpn. J. Appl. Phys. 57 (7) (2018) 5. |
[139] | X. Li, P. Guerieri, W. Zhou, C. Huang, M.R. Zachariah, ACS Appl. Mater.Inter-faces 7 (17) (2015) 9103-9109. |
[140] |
H. Wang, S. Holdren, M.R. Zachariah, Combust. Flame 197 (2018) 120-126.
DOI URL |
[141] |
J.H. Kim, J.K. Cha, M.H. Cho, H. Kim, H. Shim, S.H. Kim, Mater. Chem. Phys. 238 (2019) 121955.
DOI URL |
[142] |
H. Wang, R.J. Jacob, J.B. DeLisio, M.R. Zachariah, Combust. Flame. 180 (2017) 175-183.
DOI URL |
[143] |
Y. Hu, Y. Yang, K. Lin, D. Hao, L. Qiu, D. Wang, R. Fan, D. Xia, Chem. Eng. Sci. 207 (2019) 334-343.
DOI URL |
[144] | C.A. Wang, J. Xu, J. Dai, Y. Wang, Y. Shen, Z. Zhang, R. Shen, Y. Ye, Nanotech-nology 31 (25) (2020) 255401. |
[145] | J.B. DeLisio, X. Hu, T. Wu, G.C. Egan, G. Young, M.R. Zachariah, J. Phys. Chem.B 120 (24) (2016) 5534-5542. |
[146] |
H. Wang, M.R. Zachariah, L. Xie, G. Rao, Energy Procedia 66 (2015) 109-112.
DOI URL |
[147] | S. Sadeghipour, J. Ghaderian, M.A. Wahid, Appl. Mech. Mater. 1440 (2012) 100-108. |
[148] |
V.A. Arkhipov, A.G. Korotkikh, Combust. Flame. 159 (1) (2012) 409-415.
DOI URL |
[149] |
B.C. Terry, T.R. Sippel, M.A. Pfeil, I.E. Gunduz, S.F. Son, J. Hazard. Mater. 317 (2016) 259-266.
DOI URL |
[150] |
M.A. Trunov, M. Schoenitz, X. Zhu, E.L. Dreizin, Combust. Flame. 140 (4) (2005) 310-318.
DOI URL |
[151] |
X. Ji, D. Tang, Y. Li, Z. Xing, Y. Wang, L. Wang, Y. Gao, W. Qin, Opt. Laser Technol. 120 (2019) 105677.
DOI URL |
[152] | T. Elshenawy, S. Soliman, A. Hawass, Def. Technol. 13 (5) (2017) 376-379. |
[153] |
Y. Zhu, X. Zhou, J. Xu, X. Ma, Y. Ye, G. Yang, K. Zhang, Chem. Eng. J. 354 (2018) 885-895.
DOI URL |
[154] |
L. Chen, C. Ru, H. Zhang, Y. Zhang, Z. Chi, H. Wang, G. Li, ACS Omega. 6 (26) (2021) 16816-16825.
DOI URL |
[155] |
J. Yao, B. Li, L. Xie, J. Peng, J. Therm. Anal. Calorim. 130 (2) (2017) 835-842.
DOI URL |
[156] | X. Wang, W. Guo, Y. Li, M. Yang, Z. Han, B. Wang, Chin. J. Explos. Propellants. 43 (1) (2020) 45-50. |
[157] | X. Li, Zhao.X.Q. Lin, T. Xu, B. Wang, Proc. Int. Symp. Ballist. Ballistics. (2016) 955-960. |
[158] | W. Guo, Z. Han, Q. Lin, B. Wang, Cent. Eur. J. Energetic Mater. 15 (1) (2018) 100-114. |
[159] | J. Yao, J. Liu, Y. Wang, B. Li, L. Xie, Def. Technol. 13 (4) (2017) 263-268. |
[160] | C. Hou, J. Wang, J. Zhang, Initiat. Pyrotechnics. 3 (2010) 51-53. |
[161] |
J.E. Balzer, W.G. Proud, S.M. Walley, J.E. Field, Combust. Flame. 135 (4) (2003) 547-555.
DOI URL |
[162] |
X. Li, H. Pei, X. Zhang, X. Zheng, Propellants Explos. Pyrotech. 45 (5) (2020) 807-813.
DOI URL |
[163] |
B.P. Aduev, D.R. Nurmukhametov, I.Y. Liskov, A.V. Tupitsyn, G.M. Belokurov, Combust. Flame. 216 (2020) 468-471.
DOI URL |
[164] |
Y. Zhao, F. Zhao, S. Xu, X. Ju, Comput. Mater. Sci. 177 (2020) 109556.
DOI URL |
[165] |
Z. Zhou, J. Chen, H. Yuan, J. Nie, Propellants Explos. Pyrotech. 44 (3) (2019) 319-326.
DOI URL |
[166] |
G. Young, D.P. Wilson, M. Kessler, J.B. DeLisio, M.R. Zachariah, Combust. Sci. Technol. 193 (13) (2020) 2259-2275.
DOI URL |
[167] |
D. Zhang, X. Li, B. Qin, C. Lai, X. Guo, Mater. Lett. 120 (2014) 224-227.
DOI URL |
[168] | H. Zhang, H. Wu, P. Xu, Z. Li, W. Zhang, H. Huang, Q. Zhou, X. Yue, J. Bao, X. Li, Int. J. Electrochem. Sci. 15 (6) (2020) 5133-5143. |
[169] |
T. Yan, H. Ren, J. Liu, Y. Ou, Q. Jiao, Mater. Lett. 241 (2019) 92-95.
DOI URL |
[170] |
T. Yan, H. Ren, J. Liu, Q. Jiao, Chem. Eng. J. 379 (2020) 122333.
DOI URL |
[171] |
Z. Han, D. Wang, H. Wang, C. Henkes, J. Therm. Anal. Calorim. 123 (1) (2016) 449-455.
DOI URL |
[172] |
X. Ran, L. Ding, J. Zhou, W. Tang, Materials (Basel) 12 (23) (2019) 3940.
DOI URL |
[173] |
C. Chen, E. Tang, W. Zhu, Y. Han, Q. Gao, Exp. Therm. Fluid. Sci. 116 (2020) 110132.
DOI URL |
[174] |
H. Wang, D.J. Kline, M. Rehwoldt, T. Wu, W. Zhao, X. Wang, M.R. Zachariah, ACS Appl. Polym. Mater. 1 (5) (2019) 982-989.
DOI URL |
[175] | C. Ru, F. Wang, J. Xu, J. Dai, Y. Shen, Y. Ye, P. Zhu, R. Shen, J. Energetic Mater. 24 (12) (2016) 1136-1144. |
[176] |
X. Hu, J.B. DeLisio, X. Li, W. Zhou, M.R. Zachariah, Adv. Eng. Mater. 19 (1) (2017) 1500532.
DOI URL |
[177] | J. Narenkumar, S. Devanesan, M.S. AlSalhi, S. Kokilaramani, Y. Ting, P.K.S.M. Rahman, A. Rajasekar, Saudi, J. Biol. Sci. 23 (2021) 10029. |
[178] |
Z. He, L. Wang, Y. Ge, S. Zhang, Y. Tian, X. Yang, L. Shu, J. Hazard. Mater. 417 (2021) 126006.
DOI URL |
[179] | N.J. Rowan, E. Meade, M. Garvey, Curr. Opin. Environ. SciHealth 23 (2021) 100290. |
[180] |
L. Cheng, C. Huang, Y. Yang, Y. Li, Y. Meng, Y. Li, H. Chen, D. Song, R. Artiaga, Propellants Explos. Pyrotech. 45 (4) (2020) 657-664.
DOI URL |
[181] |
A.A. Ali, M. Madkour, F. Al Sagheer, A.A. Nazeer, J. Mater. Res. Technol. 15 (2021) 3694-3707.
DOI URL |
[182] |
L. Xiao, L. Zhao, X. Ke, T. Zhang, G. Hao, Y. Hu, G. Zhang, H. Guo, W. Jiang, Chem. Eng. Sci. 231 (2021) 116302.
DOI URL |
[183] |
S. Chen, D. Tang, X. Zhang, J. Lyu, W. He, P. Liu, Q. Yan, Engineering 6 (9) (2020) 1019-1027.
DOI URL |
[184] |
M. Abbasi, M.M. Sabzehmeidani, M. Ghaedi, R. Jannesar, A. Shokrollahi, Mater. Sci. Eng. B 267 (2021) 115086.
DOI URL |
[185] |
E. Tang, C. Liu, Y. Han, C. Chen, M. Chang, K. Guo, Int. Commun. Heat Mass Transfer. 127 (2021) 105517.
DOI URL |
[186] |
H. Guo, Y. Zheng, S. He, Q. Yu, C. Ge, H. Wang, Def. Technol. (2021), doi: 10.1016/j.dt.2021.07.009
DOI |
[187] |
F. Xiao, T. Liang, Surf. Coat. Technol. 412 (2021) 127073.
DOI URL |
[188] |
Z. Wu, J. Liu, S. Zhang, X. Liu, X. Xu, W. Ma, S. Li, C. He, Def. Technol. (2021), doi: 10.1016/j.dt.2021.08.003
DOI |
[1] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[2] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[3] | Tianxing Chang, Xuewei Fang, Gang Liu, Hongkai Zhang, Ke Huang. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 124(0): 65-75. |
[4] | Peng Chen, Jin Su, Haoze Wang, Lei Yang, Haosong Cai, Maoyuan Li, Zhaoqing Li, Jie Liu, Shifeng Wen, Yan Zhou, Chunze Yan, Yusheng Shi. Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 125(0): 105-117. |
[5] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[6] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[7] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
[8] | J. Fu, H. Li, X. Song, M.W. Fu. Multi-scale defects in powder-based additively manufactured metals and alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 165-199. |
[9] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[10] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[11] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[12] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[13] | S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian. Variant selection in additively manufactured alpha-beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 113(0): 14-21. |
[14] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[15] | Joseph A. Otte, Jin Zou, Matthew S. Dargusch. High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting [J]. J. Mater. Sci. Technol., 2022, 118(0): 114-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||