J. Mater. Sci. Technol. ›› 2022, Vol. 125: 15-28.DOI: 10.1016/j.jmst.2022.02.033
• Research Article • Previous Articles Next Articles
Haixian Liua, Wen Chenb, Yu Tana, Guozhe Menga, Hongfang Liud, YFrank Chengc, Hongwei Liua,*(
)
Received:2021-11-07
Revised:2022-02-08
Accepted:2022-02-18
Published:2022-04-12
Online:2022-04-12
Contact:
Hongwei Liu
About author:* E-mail address: liuhw35@mail.sysu.edu.cn (H. Liu).Haixian Liu, Wen Chen, Yu Tan, Guozhe Meng, Hongfang Liu, YFrank Cheng, Hongwei Liu. Characterizations of the biomineralization film caused by marine Pseudomonas stutzeri and its mechanistic effects on X80 pipeline steel corrosion[J]. J. Mater. Sci. Technol., 2022, 125: 15-28.
Fig. 1. Changes of DO (a) and the planktonic and sessile P. stutzeri cells counts (b) initially and at the end of 14 days in the artificial seawater. The growth curves of P. stutzeri with different initial cell counts in the presence (c) and absence (d) of steel specimens.
Fig. 3. SEM images of the corrosion product films corresponding to different initial cell concentration after 14 days of testing in the artificial seawater: (a) abiotic control; (b) 107 cells/mL; (c) 105 cells/mL; (d) 103 cells/mL.
Fig. 4. 2D and 3D morphologies of corrosion product films corresponding to different initial cell concentrations after 14 days of testing in the artificial seawater: (a, b) abiotic control; (c, d) 107 cells/mL; (e, f) 105 cells/mL; (g, h) 103 cells/mL. Part of the corrosion products was removed to measure the thickness of surface films.
Fig. 5. The thicknesses of corrosion product films of specimens with different initial cell concentrations after 14 days of testing calculated from the 3D morphologies in Fig. 4.
Fig. 6. TEM images (a-d) of the corrosion products in the abiotic seawater, the inset image in (a) is the SAED pattern. Image (b) is the partially enlarged image (a). HRTEM images (c, d) and the inset image in (c) correspond to FFT patterns based on the red square area. The elemental mapping of corrosion products (e).
Fig. 7. TEM images (a-d) of the biominerals in the presence of P. stutzeri of 107 cells/mL in the seawater, the inset image in (a) is the SAED pattern. Image (b) is the partially enlarged image (a). HRTEM images (c, d) and the inset image in (c) correspond to FFT patterns based on the red square area. The elemental mapping of corrosion products (e).
Fig. 8. XRD analysis results of corrosion products of specimens with different initial cell concentrations after 14 days of testing in the artificial seawater.
Fig. 9. 3D surface morphologies of specimens after removing corrosion products with different initial cell concentrations after 14 days of testing in the artificial seawater: (a) abiotic control; (b) 107 cells/mL; (c) 105 cells/mL; (d) 103 cells/mL.
Fig. 10. Time-dependence of Nyquist and Bode plots of specimens treated without and with P. stutzeri with different initial cell concentrations in the artificial seawater: (a, b) abiotic control; (c, d) 107 cells/mL; (e, f) 105 cells/mL; (g, h) 103 cells/mL.
Fig. 11. Electrochemical equivalent circuits used for the fitting of the measured EIS data: (a) used to fit EIS data with inductive reactance; (b) one time-constant and (c) two time-constants.
Fig. 12. The changes of EIS fitted results (Rp, i.e., Rf + Rct) with time corresponding to different specimens in the presence and absence of P. stutzeri in the artificial seawater.
Fig. 13. The potentiodynamic polarization curves of abiotic and biotic specimens in the presence and absence of P. stutzeri with different initial cell counts after testing in the artificial seawater for 14 days.
| Empty Cell | ba (V dec-1) | bc (V dec-1) | Ecorr (V vs. SCE) | icorr (A cm-2) |
|---|---|---|---|---|
| Control | 0.069±0.003 | -0.149±0.006 | -0.775±0.005 | (4.49±0.57)×10-6 |
| 107 cells/mL | 0.048±0.011 | -0.168±0.024 | -0.740±0.012 | (1.04±0.27)×10-6 |
| 105 cells/mL | 0.047±0.014 | -0.162±0.019 | -0.761±0.014 | (2.24±1.34)×10-6 |
| 103 cells/mL | 0.064±0.001 | -0.162±0.006 | -0.766±0.008 | (4.17±0.20)×10-6 |
Table 1. Electrochemical parameters fitted to the potentiodynamic polarization curves in Fig. 13, corresponding to abiotic and biotic specimens in the presence and absence of P. stutzeri after testing in the artificial seawater for 14 days.
| Empty Cell | ba (V dec-1) | bc (V dec-1) | Ecorr (V vs. SCE) | icorr (A cm-2) |
|---|---|---|---|---|
| Control | 0.069±0.003 | -0.149±0.006 | -0.775±0.005 | (4.49±0.57)×10-6 |
| 107 cells/mL | 0.048±0.011 | -0.168±0.024 | -0.740±0.012 | (1.04±0.27)×10-6 |
| 105 cells/mL | 0.047±0.014 | -0.162±0.019 | -0.761±0.014 | (2.24±1.34)×10-6 |
| 103 cells/mL | 0.064±0.001 | -0.162±0.006 | -0.766±0.008 | (4.17±0.20)×10-6 |
Fig. 14. Changes of galvanic current density distributions of the abiotic control WBE specimen with time in the artificial seawater: (a) 1 d; (b) 2 d; (c) 4 d; (d) 7 d; (e) 10 d; (f) 14 d.
Fig. 15. Changes of galvanic current density distributions of the biotic WBE specimen with time in the artificial seawater: (a) 1 d; (b) 2 d; (c) 4 d; (d) 7 d; (e) 10 d; (f) 14 d.
| [1] |
E. Arzaghi, B.H. Chia, M.M. Abaei, R. Abbassi, V. Garaniya, Process Saf. Environ. Prot. 141 (2020) 135-139.
DOI URL |
| [2] |
W. Zhang, H.J. Li, M. Wang, L.J. Wang, Q. Pan, X. Ji, Y. Qin, Y.C. Wu, J. Mol. Liq. 293 (2019) 111478.
DOI URL |
| [3] | L. Zhiyong, C. Zhongyu, L. Xiaogang, D. Cuiwei, X. Yunying, Electrochem. Com-mun. 48 (2014) 127-129. |
| [4] |
H. Xue, Y. Cheng, J. Mater. Eng. Perform. 19 (2010) 1311-1317.
DOI URL |
| [5] |
M. Zhu, C. Du, X. Li, Z. Liu, S. Wang, J. Li, D. Zhang, Electrochim. Acta 117 (2014) 351-359.
DOI URL |
| [6] |
T. Shibata, T. Takeyama, Nature 260 (1976) 315-316.
DOI URL |
| [7] | S. Zhang, W. Zhou, Int. J. Pressure Vessels Pip. 111 (2013) 120-130. |
| [8] |
A. Marciales, Y. Peralta, T. Haile, T. Crosby, J. Wolodko, Corros. Sci. 146 (2019) 99-111.
DOI |
| [9] | Y. Lou, W. Chang, T. Cui, J. Wang, H. Qian, L. Ma, X. Hao, D. Zhang, Bioelectro-chemistry (2021) 107883. |
| [10] | K.A. Zarasvand, V.R. Rai, Biodegradation 87 (2014) 66-74. |
| [11] |
T. Wu, M. Yan, D. Zeng, J. Xu, C. Sun, C. Yu, W. Ke, J. Mater. Sci. Technol. 31 (2015) 413-422.
DOI URL |
| [12] |
M. Stipaničev, O. Rosas, R. Basseguy, F. Turcu, Corros. Sci. 80 (2014) 60-70.
DOI URL |
| [13] |
X. Chen, G. Wang, F. Gao, Y. Wang, C. He, Corros. Sci. 101 (2015) 1-11.
DOI URL |
| [14] |
T. Wu, M. Yan, L. Yu, H. Zhao, C. Sun, F. Yin, W. Ke, Corros. Sci. 157 (2019) 518-530.
DOI URL |
| [15] |
B.A. An, E. Deland, O. Sobol, J. Yao, T.L. Skovhus, A. Koerdt, Corros. Sci. 180 (2021) 109179.
DOI URL |
| [16] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
| [17] |
D. Xu, Y. Li, T. Gu, Bioelectrochemistry 110 (2016) 52-58.
DOI URL |
| [18] |
Z. Li, J. Zhou, X. Yuan, Y. Xu, D. Xu, D. Zhang, D. Feng, F. Wang, ACS Appl. Mater. Int. 13 (2021) 47272-47282.
DOI URL |
| [19] | T. Gu, D. Wang, Y. Lekbach, D. Xu, Curr. Opin. Electrochem. 29 (2021) 100763. |
| [20] |
S. Kato, Microb. Biotechnol. 9 (2016) 141-148.
DOI URL |
| [21] |
D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Has-sel, M. Stratmann, F. Widdel, Environ. Microbiol. 14 (2012) 1772-1787.
DOI URL |
| [22] |
T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol. 35 (2019) 631-636.
DOI URL |
| [23] |
D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91 (2014) 74-81.
DOI URL |
| [24] |
H. Liu, T. Gu, G. Zhang, H. Liu, Y.F. Cheng, Corros. Sci. 136 (2018) 47-59.
DOI URL |
| [25] |
Y. Fan, C. Chen, Y. Zhang, H. Liu, H. Liu, H. Liu, Bioelectrochemistry 141 (2021) 107880.
DOI URL |
| [26] |
A. Rajasekar, Y.P. Ting, Ind. Eng. Chem. Res. 50 (2011) 12534-12541.
DOI URL |
| [27] |
R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9.
DOI URL |
| [28] |
B. Liu, E. Fan, J. Jia, C. Du, Z. Liu, X. Li, Constr. Build. Mater. 303 (2021) 124454.
DOI URL |
| [29] |
M. Saleem Khan, Z. Li, K. Yang, D. Xu, C. Yang, D. Liu, Y. Lekbach, E. Zhou, P. Kalnaowakul, J. Mater. Sci. Technol. 35 (2019) 216-222.
DOI |
| [30] |
J. Lalucat, A. Bennasar, R. Bosch, E. García-Valdés, N.J. Palleroni, Microbiol. Mol. Biol. Rev. 70 (2006) 510-547.
DOI URL |
| [31] |
H. Liu, Y.F. Cheng, Corros. Sci. 173 (2020) 108753.
DOI URL |
| [32] |
H. Liu, X. Zhong, H. Liu, Y.F. Cheng, Electrochem. Commun. 90 (2018) 1-5.
DOI URL |
| [33] |
H. Liu, T. Gu, G. Zhang, W. Wang, S. Dong, Y. Cheng, H. Liu, Corros. Sci. 105 (2016) 149-160.
DOI URL |
| [34] |
Y.S. Choi, S. Nesic, S. Ling, Electrochim. Acta 56 (2011) 1752-1760.
DOI URL |
| [35] |
X. Xu, H. Lu, Y. Su, M. Peng, F. Xing, K. Luo, J. Lu, Corros. Sci. 195 (2022) 109976.
DOI URL |
| [36] |
R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118 (2017) 38-46.
DOI PMID |
| [37] |
H. Venzlaff, D. Enning, J. Srinivasan, K.J. Mayrhofer, A.W. Hassel, F. Widdel, M. Stratmann, Corros. Sci. 66 (2013) 88-96.
DOI URL |
| [38] | P.F. Beese-Vasbender, S. Nayak, A. Erbe, M. Stratmann, K.J. Mayrhofer, Elec-trochim. Acta 167 (2015) 321-329. |
| [39] |
S. Weiner, P.M. Dove, Rev. Mineral. Geochem. 54 (2003) 1-29.
DOI URL |
| [40] |
F. Nudelman, N.A. Sommerdijk, Angew. Chem. Int. Ed. 51 (2012) 6582-6596.
DOI PMID |
| [41] | D. Mudgil, S. Baskar, R. Baskar, D. Paul, Y.S. Shouche, Khasi Hill Caves, Megha-laya, India, Geomicrobiol. J. 35 (2018) 675-694. |
| [42] |
H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, H. Liu, Corros. Sci. 100 (2015) 484-495.
DOI URL |
| [43] |
H. Liu, Y.F. Cheng, D. Xu, H. Liu, J. Electrochem. Soc. 165 (2018) C354.
DOI URL |
| [44] |
T. Liu, Z. Guo, Z. Zeng, N. Guo, Y. Lei, T. Liu, S. Sun, X. Chang, Y. Yin, X. Wang, ACS Appl. Mater. Int. 10 (2018) 40317-40327.
DOI URL |
| [45] |
N. Guo, Y. Wang, X. Hui, Q. Zhao, Z. Zeng, S. Pan, Z. Guo, Y. Yin, T. Liu, J. Mater. Sci. Technol. 66 (2021) 82-90.
DOI |
| [46] |
H. Liu, T. Gu, G. Zhang, Y. Cheng, H. Wang, H. Liu, Corros. Sci. 102 (2016) 93-102.
DOI URL |
| [47] |
G. Gunasekaran, S. Chongdar, S. Gaonkar, P. Kumar, Corros. Sci. 46 (2004) 1953-1967.
DOI URL |
| [48] |
P. Parthipan, D. Sabarinathan, S. Angaiah, A. Rajasekar, J. Mol. Liq. 261 (2018) 473-479.
DOI URL |
| [49] | A. Sydow, T. Krieg, F. Mayer, J. Schrader, D. Holtmann, Appl. Microbiol. Biot. 98 (2014) 84 81-84 95. |
| [50] |
Z. Guo, X. Hui, Q. Zhao, N. Guo, Y. Yin, T. Liu, Corros. Sci. 190 (2021) 109687.
DOI URL |
| [51] | E. Zhou, Y. Lekbach, T. Gu, D. Xu, Curr. Opin. Electrochem. 31 (2022) 100830. |
| [52] |
H.Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, T.L. Woodard, D.E. Holmes, T. Gu, F. Wang, D.R. Lovley, ISME J. 15 (2021) 3084-3093.
DOI URL |
| [53] |
B. Sherar, I. Power, P. Keech, S. Mitlin, G. Southam, D. Shoesmith, Corros. Sci. 53 (2011) 955-960.
DOI URL |
| [1] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
| [2] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
| [3] | Xinghong Zhang, Baihe Du, Ping Hu, Yuan Cheng, Jiecai Han. Thermal response, oxidation and ablation of ultra-high temperature ceramics, C/SiC, C/C, graphite and graphite-ceramics [J]. J. Mater. Sci. Technol., 2022, 102(0): 137-158. |
| [4] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
| [5] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
| [6] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
| [7] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
| [8] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
| [9] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
| [10] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
| [11] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
| [12] | Yuanchang Li, Wenda Li, Xiujuan Yan, Zhenfang Zhou, Xiaosong Guo, Jing Liu, Changming Mao, Zhonghua Zhang, Guicun Li. Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides [J]. J. Mater. Sci. Technol., 2022, 103(0): 221-231. |
| [13] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
| [14] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
| [15] | Hanghang Liu, Paixian Fu, Hongwei Liu, Chen Sun, Ningyu Du, Dianzhong Li. Limitations of the homogenization process of bulk martensitic mold steel-depending on the comprehensive manifestation of various strengthening [J]. J. Mater. Sci. Technol., 2022, 117(0): 120-132. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
