J. Mater. Sci. Technol. ›› 2022, Vol. 125: 1-14.DOI: 10.1016/j.jmst.2022.03.006
• Research Article • Next Articles
Nan Yanga, Nagasivamuni Balasubramania, Jeffrey Venezuelaa, Helle Bielefeldt-Ohmannb,c, Rachel Allavenab, Sharifah Almathamia, Matthew Darguscha,*(
)
Received:2022-02-14
Revised:2022-03-07
Accepted:2022-03-16
Published:2022-04-13
Online:2022-04-13
Contact:
Matthew Dargusch
About author:* E-mail address: m.drargusch@uq.edu.au (M. Dargusch).Nan Yang, Nagasivamuni Balasubramani, Jeffrey Venezuela, Helle Bielefeldt-Ohmann, Rachel Allavena, Sharifah Almathami, Matthew Dargusch. Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition[J]. J. Mater. Sci. Technol., 2022, 125: 1-14.
Fig. 1. Microstructure of (a) as cast TA15-N-C, (b) as cast TA15-UST-C under OM, (c) Magnified SEM image of TA15-UST-C and associated element mapping of (c1) Ca and (c2) Ti, (c3) spot analysis on the elemental composition of the maked region. (d) CaZn13 phase size distribution in both as cast alloys (n=650).
Fig. 2. Microstructure of (a) hot rolled TA15-N under bright field OM, (a1) under SEM and (a2) under polarised OM. (b) hot rolled TA15-UST under bright field OM, (b1) under SEM and (b2) under polarised OM. (c) XRD patterns of the hot rolled pure Zn, TA15-N and TA15-UST. (d) Coefficient of variation of the second phase volume fraction of TA15-N and TA15-UST measured at different field size. (e) CaZn13 phase size distribution in both hot rolled alloys (n=650).
| Field size[μm2] | Average A(CaZn13) [%] | COV [%] | Min A(CaZn13) [%] | Max A(CaZn13) [%)] | ||||
|---|---|---|---|---|---|---|---|---|
| N | UST | N | UST | N | UST | N | UST | |
| 2500 | 14.08 | 14.23 | 98.80 | 37.27 | 0 | 6.82 | 52.40 | 25.69 |
| 10000 | 13.4 | 13.51 | 54.82 | 26.13 | 2.21 | 7.26 | 27.42 | 20.53 |
| 40000 | 13.33 | 13.17 | 41.51 | 20.01 | 4.65 | 8.13 | 23.06 | 17.89 |
| 160000 | 12.97 | 12.84 | 21.01 | 13.42 | 6.61 | 10.05 | 18.2 | 14.78 |
Table 1. Area fraction of CaZn13 phase in TA15-N and TA15-UST measured at different field sizes (n=50).
| Field size[μm2] | Average A(CaZn13) [%] | COV [%] | Min A(CaZn13) [%] | Max A(CaZn13) [%)] | ||||
|---|---|---|---|---|---|---|---|---|
| N | UST | N | UST | N | UST | N | UST | |
| 2500 | 14.08 | 14.23 | 98.80 | 37.27 | 0 | 6.82 | 52.40 | 25.69 |
| 10000 | 13.4 | 13.51 | 54.82 | 26.13 | 2.21 | 7.26 | 27.42 | 20.53 |
| 40000 | 13.33 | 13.17 | 41.51 | 20.01 | 4.65 | 8.13 | 23.06 | 17.89 |
| 160000 | 12.97 | 12.84 | 21.01 | 13.42 | 6.61 | 10.05 | 18.2 | 14.78 |
Fig. 3. (a-f) Corrosion morphology and (g) corrosion rate of Zn, TA15-N and TA15-UST after 4 and 8 weeks of immersion in HBSS. (h1)-(h5), (i1)-(i5) cross-sectional view of the corrosion morphology of TA15-N and TA15-UST plates after 8 weeks of immersion test.
Fig. 4. Corrosion product composition and distribution on pure Zn, TA15-N, and TA15-UST after 8 weeks of immersion test in HBSS solution. SEM images on the cross section of (a) Zn, (b) TA15-N, (c) TA15-UST, and the associated elemental mapping images of C, O, Ca, Zn, P, Cl. (d) Normalised weight percentages of C, O, Ca, Zn, P, Cl in the marked region in Figure (b) and (c), obtained from EDS point analysis. (e) FTIR analysis on the corrosion product composition.
| Empty Cell | Zn | TA15-N | TA15-UST |
|---|---|---|---|
| Corrosion potential, Ecorr [V vs. SCE] | -1.05 ± 0.04 | -1.12 ± 0.02 | -1.11 ± 0.04 |
| Corrosion current density, icorr [μA cm-2] | 1.22 ± 0.23 | 2.25 ± 0.36 | 2.65 ± 0.32 |
| Corrosion rate, CR [um y-1] | 18.29 ± 3.44 | 33.87 ± 5.41 | 35.13 ± 4.24 |
Table 2. Corrosion potential and corrosion rate measured from electrochemical polarisation test for Zn, TA15-N and TA15-UST alloys in Hanks solution.
| Empty Cell | Zn | TA15-N | TA15-UST |
|---|---|---|---|
| Corrosion potential, Ecorr [V vs. SCE] | -1.05 ± 0.04 | -1.12 ± 0.02 | -1.11 ± 0.04 |
| Corrosion current density, icorr [μA cm-2] | 1.22 ± 0.23 | 2.25 ± 0.36 | 2.65 ± 0.32 |
| Corrosion rate, CR [um y-1] | 18.29 ± 3.44 | 33.87 ± 5.41 | 35.13 ± 4.24 |
| Material | Rs[Ω cm2] | Rct[kΩ cm2] | CPEdl-T[μF sn-1 cm-2] | n1 | Rf[kΩ cm2] | CPEf-T[μF sn-1 cm-2] | n2 | Chi square, χ2 |
|---|---|---|---|---|---|---|---|---|
| Zn | 3.25 ± 0.11 | 9.41 ± 0.44 | 37.50 ± 4.60 | 0.53 ± 0.02 | 0.32 ± 0.01 | 8.81 ± 0.37 | 0.96 ± 0.01 | 0.0022 |
| TA15-N | 7.44 ± 0.09 | 4.23 ± 0.15 | 248.64 ± 7.53 | 0.52 ± 0.02 | 1.22 ± 0.05 | 9.23 ± 0.29 | 0.87 ± 0.03 | 0.0004 |
| TA15-UST | 2.46 ± 0.17 | 3.04 ± 0.22 | 341.63 ± 32.48 | 0.67 ± 0.05 | 1.40 ± 0.21 | 9.90 ± 0.69 | 0.92 ± 0.01 | 0.0056 |
Table 3. Circuit parameters obtained from mathematical fitting of EIS data of the studies alloys.
| Material | Rs[Ω cm2] | Rct[kΩ cm2] | CPEdl-T[μF sn-1 cm-2] | n1 | Rf[kΩ cm2] | CPEf-T[μF sn-1 cm-2] | n2 | Chi square, χ2 |
|---|---|---|---|---|---|---|---|---|
| Zn | 3.25 ± 0.11 | 9.41 ± 0.44 | 37.50 ± 4.60 | 0.53 ± 0.02 | 0.32 ± 0.01 | 8.81 ± 0.37 | 0.96 ± 0.01 | 0.0022 |
| TA15-N | 7.44 ± 0.09 | 4.23 ± 0.15 | 248.64 ± 7.53 | 0.52 ± 0.02 | 1.22 ± 0.05 | 9.23 ± 0.29 | 0.87 ± 0.03 | 0.0004 |
| TA15-UST | 2.46 ± 0.17 | 3.04 ± 0.22 | 341.63 ± 32.48 | 0.67 ± 0.05 | 1.40 ± 0.21 | 9.90 ± 0.69 | 0.92 ± 0.01 | 0.0056 |
Fig. 6. (a) typical stress-strain curve, and (b) bar chart showing the changes in mechanical properties of TA15-N and TA15-UST after 8 weeks of storage in HBSS/air. Facture surfaces of (c) pure Zn, (d) TA15-N, (e) TA15-UST without experiencing biodegradation; facture surfaces of (d) TA15-N, (e) TA15-UST after 8 weeks of immersion in HBSS.
| Alloy system | CaZn13 size [µm] | Mechanical properties | Refs. | ||
|---|---|---|---|---|---|
| YS [MPa] | UTS [MPa] | ef [%] | |||
| Zn-1.0Cu-0.5Ca C | 73.58 ± 112.84 | - | - | - | This work |
| Zn-1.0Cu-0.5Ca UST-C | 10.91 ± 4.65 | - | - | - | This work |
| Zn-1.0Cu-0.5Ca C-HR | 13.76 ± 7.08(cracks) | 179.31 ± 1.80 | 250.89 ± 3.86 | 27.52 ± 2.3 | This work |
| Zn-1.0Cu-0.5Ca UST-HR | 10.81 ± 4.69 | 190.34 ± 4.47 | 282.01 ± 5.88 | 29.38 ± 3.1 | This work |
| Zn-1.5Mg-0.1Ca C | Approx. 1501(cracks) | 173.81 ± 15.09 | 241.38 ± 0.39 | 1.72 ± 0.01 | [34] |
| Zn-0.2Mg-0.15Ca HE | 15-50 | 202.8 ± 2.0 | 259.3 ± 2.3 | 6 | [40] |
| Zn-0.6Mg-0.1Ca C | 30.9 ± 10.6 | - | <200 | <2.5 | [33] |
| Zn-0.6Mg-0.1Ca ECAP (12P) | ∼30(cracks) | - | ∼320 | ∼7 | |
| Zn-0.8Mn-0.4Ca C | 26 | 112.2 ± 3.4 | 120.3 ± 6.3 | 0.3 ± 0.1 | [35,36] |
| Zn-0.8Mn-0.4Ca HE | 17 | 253.4 ± 1.3 | 343.2 ± 1.6 | 8.0 ± 1.4 | |
| Zn-0.8Mn-0.4Ca HE+WCR | 12.9(cracks) | 244.9 ± 5.7 | 322.6 ± 11.2 | 11.8 ± 0.9 | |
| Zn-0.1Li-0.4Ca HE | 23.67 ± 12.582 | ∼366 | ∼415 | ∼4 | [29] |
| Zn-0.8Li-0.4Ca HE | 39.55 ± 19.643 | ∼245 | ∼444 | ∼10 | |
| C: casting, HR: hot rolling, HE-hot extrusion, ECAP: equal channel angular pressing, WCR: warm calibre rolling | |||||
Table 4. CaZn13 phase size and mechanical properties in the current Zn-Ca based alloys.
| Alloy system | CaZn13 size [µm] | Mechanical properties | Refs. | ||
|---|---|---|---|---|---|
| YS [MPa] | UTS [MPa] | ef [%] | |||
| Zn-1.0Cu-0.5Ca C | 73.58 ± 112.84 | - | - | - | This work |
| Zn-1.0Cu-0.5Ca UST-C | 10.91 ± 4.65 | - | - | - | This work |
| Zn-1.0Cu-0.5Ca C-HR | 13.76 ± 7.08(cracks) | 179.31 ± 1.80 | 250.89 ± 3.86 | 27.52 ± 2.3 | This work |
| Zn-1.0Cu-0.5Ca UST-HR | 10.81 ± 4.69 | 190.34 ± 4.47 | 282.01 ± 5.88 | 29.38 ± 3.1 | This work |
| Zn-1.5Mg-0.1Ca C | Approx. 1501(cracks) | 173.81 ± 15.09 | 241.38 ± 0.39 | 1.72 ± 0.01 | [34] |
| Zn-0.2Mg-0.15Ca HE | 15-50 | 202.8 ± 2.0 | 259.3 ± 2.3 | 6 | [40] |
| Zn-0.6Mg-0.1Ca C | 30.9 ± 10.6 | - | <200 | <2.5 | [33] |
| Zn-0.6Mg-0.1Ca ECAP (12P) | ∼30(cracks) | - | ∼320 | ∼7 | |
| Zn-0.8Mn-0.4Ca C | 26 | 112.2 ± 3.4 | 120.3 ± 6.3 | 0.3 ± 0.1 | [35,36] |
| Zn-0.8Mn-0.4Ca HE | 17 | 253.4 ± 1.3 | 343.2 ± 1.6 | 8.0 ± 1.4 | |
| Zn-0.8Mn-0.4Ca HE+WCR | 12.9(cracks) | 244.9 ± 5.7 | 322.6 ± 11.2 | 11.8 ± 0.9 | |
| Zn-0.1Li-0.4Ca HE | 23.67 ± 12.582 | ∼366 | ∼415 | ∼4 | [29] |
| Zn-0.8Li-0.4Ca HE | 39.55 ± 19.643 | ∼245 | ∼444 | ∼10 | |
| C: casting, HR: hot rolling, HE-hot extrusion, ECAP: equal channel angular pressing, WCR: warm calibre rolling | |||||
| [1] |
Y.F. Zheng, X.N. Gu, F. Witte, Mater. Sci. Eng. R Rep. 77 (2014) 1-34.
DOI URL |
| [2] |
E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71 (2018) 1-23.
DOI PMID |
| [3] | H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, W.J.B. Li, Biomaterials 145 (2017) 92-105. |
| [4] |
H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, Y. Zheng, Nat. Commun. 11 (1) (2020) 401.
DOI URL |
| [5] |
D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Acta Biomater. 7 (9) (2011) 3515-3522.
DOI PMID |
| [6] |
J.J.D. Venezuela, S. Johnston, M.S. Dargusch, Adv. Healthc. Mater. 8 (16) (2019) 1900408.
DOI URL |
| [7] |
D. Hernández-Escobar, S. Champagne, H. Yilmazer, B. Dikici, C.J. Boehlert, H. Hermawan, Acta Biomater. 97 (2019) 1-22.
DOI PMID |
| [8] |
J. Venezuela, M.S. Dargusch, Acta Biomater. 87 (2019) 1-40.
DOI PMID |
| [9] | J. Venezuela, S. Johnston, M.S. Dargusch, C. Wen, in: Metallic Biomaterials Processing and Medical Device Manufacturing, Woodhead Publishing, 2020, pp. 469-515. |
| [10] | G. Li, H. Yang, Y. Zheng, X. Chen, J. Yang, D. Zhu, L. Ruan, K. Takashima, Acta Biomater. (2019). |
| [11] | H. Kabir, K. Munir, C. Wen, Y. Li, Bioact. Mater. 6 (3) (2021) 836-879. |
| [12] |
N. Yang, N. Balasubramani, J. Venezuela, S. Almathami, C. Wen, M. Dargusch, Bioact. Mater. 6 (5) (2021) 1436-1451.
DOI PMID |
| [13] |
P. Li, W. Zhang, J. Dai, A.B. Xepapadeas, E. Schweizer, D. Alexander, L. Schei-deler, C. Zhou, H. Zhang, G. Wan, J. Geis-Gerstorfer, Mater. Sci. Eng. C 103 (2019) 109826.
DOI URL |
| [14] | X. Qu, H. Yang, B. Jia, Z. Yu, Y. Zheng, K. Dai, Acta Biomater. (2020). |
| [15] | W. Zhang, P. Li, G. Shen, X. Mo, C. Zhou, D. Alexander, F. Rupp, J. Geis-Gerstor-fer, H. Zhang, G. Wan, Bioact. Mater. 6 (4) (2021) 975-989. |
| [16] |
R. Yue, H. Huang, G. Ke, H. Zhang, J. Pei, G. Xue, G. Yuan, Mater. Charact. 134 (2017) 114-122.
DOI URL |
| [17] |
R. Yue, J. Zhang, G. Ke, G. Jia, H. Huang, J. Pei, B. Kang, H. Zeng, G. Yuan, Mater. Sci. Eng. C 105 (2019) 110106.
DOI URL |
| [18] |
R. Yue, J. Niu, Y. Li, G. Ke, H. Huang, J. Pei, W. Ding, G. Yuan, Mater. Sci. Eng. C 113 (2020) 111007.
DOI URL |
| [19] |
S. Lin, Q. Wang, X. Yan, X. Ran, L. Wang, J.G. Zhou, T. Hu, G.J.M.L. Wang, Mater. Lett. 234 (2019) 294-297.
DOI URL |
| [20] |
Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Mater. Des. 117 (2017) 84-94.
DOI URL |
| [21] |
J. Lin, X. Tong, Z. Shi, D. Zhang, L. Zhang, K. Wang, A. Wei, L. Jin, J. Lin, Y. Li, C. Wen, Acta Biomater. 106 (2020) 410-427.
DOI URL |
| [22] |
Z.Z. Shi, J. Yu, X.F. Liu, L.N. Wang, J. Mater. Sci. Technol. 34 (6) (2018) 1008-1015.
DOI URL |
| [23] |
C. Chen, R. Yue, J. Zhang, H. Huang, J. Niu, G. Yuan, Mater. Sci. Eng. C 116 (2020) 111172.
DOI URL |
| [24] |
J. Young, R.G. Reddy, J. Alloy. Compd. 844 (2020) 156257.
DOI URL |
| [25] |
Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, G. Yuan, J. Mech. Behav. Biomed. Mater. 72 (2017) 182-191.
DOI URL |
| [26] | J. Niu, Z. Tang, H. Huang, J. Pei, H. Zhang, G. Yuan, W. Ding, Mater. Sci. Eng. C 69 (2016) 407-413. |
| [27] |
P. Li, C. Schille, E. Schweizer, F. Rupp, A. Heiss, C. Legner, U.E. Klotz, J. Geis-Ger-storfer, L. Scheideler, Int. J. Mol. Sci. 19 (3) (2018) 755.
DOI URL |
| [28] | P. Piste, D. Sayaji, M. Avinash, Int. J. Res. Pharm. Biomed. Sci. 4 (2012) 2229-3701. |
| [29] | Z. Zhang, B. Jia, H. Yang, Y. Han, Q. Wu, K. Dai, Y. Zheng, Bioact. Mater. 6 (11)(2021) 3999-4013. |
| [30] |
H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep 5 (2015) 10719.
DOI PMID |
| [31] | H. Okamoto, Phase Equilib. Diffus. 34 (2) (2013) 171-171. |
| [32] |
Q. Li, M. Wei, J. Yang, Z. Zhao, J. Ma, D. Liu, Y. Lan, J. Alloy. Compd. 887 (2021) 161255.
DOI URL |
| [33] |
H. Huang, H. Liu, L. Wang, K. Yan, Y. Li, J. Jiang, A. Ma, F. Xue, J. Bai, J. Alloy. Compd. 844 (2020) 155923.
DOI URL |
| [34] |
X. Liu, J. Sun, K. Qiu, Y. Yang, Z. Pu, L. Li, Y. Zheng, J. Alloy. Compd. 664 (2016) 444-452.
DOI URL |
| [35] |
Z.Z. Shi, H.Y. Li, J.Y. Xu, X.X. Gao, X.F. Liu, Mater. Sci. Eng. A 771 (2020) 138626.
DOI URL |
| [36] |
Z.Z. Shi, J. Yu, X.F. Liu, H.J. Zhang, D.W. Zhang, Y.X. Yin, L.N. Wang, Mater. Sci. Eng. C 99 (2019) 969-978.
DOI URL |
| [37] |
Y. Zou, X. Chen, B. Chen, Mater. Lett. 218 (2018) 193-196.
DOI URL |
| [38] |
H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Mater. Des. 83 (2015) 95-102.
DOI URL |
| [39] |
D. Dvorský, J. Kubásek, J. Čapek, J. Pinc, D. Vojtěch, Key Eng. Mater. 821 (2019) 17-22.
DOI URL |
| [40] | L.Q. Wang, S.N. Sun, Y.P. Ren, G.W. Qin, Dongbei Daxue Xuebao J. Northeast. Univ. 39 (1) (2018) 35-39. |
| [41] |
O. Avior, N. Ben Ghedalia-Peled, T. Ron, R. Vago, E. Aghion, Metals 10 (12)(2020) 1624.
DOI URL |
| [42] |
J. Pinc, J. Čapek, J. Kubásek, P. Veřtát, K. Hosová, Procedia Struct. Integr. 23 (2019) 21-26.
DOI URL |
| [43] |
N. Balasubramani, N. Yang, J. Venezuela, M. Dargusch, Mater. Lett. 305 (2021) 130754.
DOI URL |
| [44] |
Z.Z. Shi, X.X. Gao, H.T. Chen, X.F. Liu, A. Li, H.J. Zhang, L.N. Wang, Mater. Sci. Eng. C 116 (2020) 111197.
DOI URL |
| [45] |
Z.Z. Shi, W.S. Bai, X.F. Liu, H.J. Zhang, Y.X. Yin, L.N. Wang, Mater. Charact. 158 (2019) 109993.
DOI URL |
| [46] | N. Balasubramani, D. StJohn, M. Dargusch, G. Wang, Materials 12 (19)(2019). |
| [47] | ASTM E112-13 Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013. |
| [48] | E1245-03 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM Interna-tional, West Conshohocken, PA, 2016. |
| [49] | F3268-18a Standard Guide for in Vitro Degradation Testing of Absorbable Met-als, ASTM International, West Conshohocken, PA, 2018. |
| [50] | ASTM F3263-18a Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2021. |
| [51] | A. International, in: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken, PA, 2015, pp. G102-G189. 2015. |
| [52] | E92-17 Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2017. |
| [53] | E8/E8M-16ae1 Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016. |
| [54] | G.F. Vander Voort, G.F.V. Vander, in: Evaluating Clustering of Second-Phase Particles, ASTM International, West Conshohocken, PA, 1991, pp. 242-267. |
| [55] |
R.C. Zeng, X.T. Li, L.J. Liu, S.Q. Li, F. Zhang, J. Mater. Sci. Technol. 32 (5) (2016) 437-444.
DOI URL |
| [56] |
K. Chen, X. Gu, H. Sun, H. Tang, H. Yang, X. Gong, Y. Fan, J. Mater. Sci. Technol. 91 (2021) 134-147.
DOI |
| [57] | L. Liu, Y. Meng, C. Dong, Y. Yan, A.A. Volinsky, L.N. Wang, J. Mater. Sci. Technol. 34 (12) (2018) 2271-2282. |
| [58] |
H. Dong, F. Lin, A.R. Boccaccini, S. Virtanen, Corros. Sci. 182 (2021) 109278.
DOI URL |
| [59] |
C. Holt, M.J.J.M. van Kemenade, J.E. Harries, L.S. Nelson, R.T. Bailey, D. W.L. Hukins, S.S. Hasnain, P.L. De Bruyn, J. Cryst. Growth 92 (1) (1988) 239-252.
DOI URL |
| [60] |
P.K. Bowen, J. Drelich, J. Goldman, Acta Biomater. 10 (3) (2014) 1475-1483.
DOI URL |
| [61] |
A.J. Drelich, S. Zhao, R.J. Guillory, J.W. Drelich, J. Goldman, Acta Biomater. 58 (2017) 539-549.
DOI PMID |
| [62] | N. Kourkoumelis, M. Tzaphlidou, Sci. World J. 10 (2010) 134810. |
| [63] |
S. Huang, W. Wu, Y. Su, L. Qiao, Y. Yan, Corros. Sci. 178 (2021) 109071.
DOI URL |
| [64] |
J. Zhuang, M. Li, Y. Pu, A.J. Ragauskas, C.G. Yoo, Appl. Sci. 10 (12) (2020) 4345.
DOI URL |
| [65] |
J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, Electrochim. Acta 51 (8) (2006) 1473-1479.
DOI URL |
| [66] |
H. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman, J.W. Drelich, Mater. Sci. Eng. C 84 (2017) 67-79.
DOI URL |
| [67] | ISO, Biological Evaluation of Medical Devices, Part 5: Tests for in Vitro Cytotox-icity, International Organization for Standardization, 2009, pp. 10993-10995. 10993-5:2009. |
| [68] |
J. Wang, F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, D. Zhao, J. Meng, Y. Li, W. Li, K. Chan, L. Qin, Acta Biomater. 21 (2015) 237-249.
DOI URL |
| [69] |
B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, B.W. Ahn, Acta Mater. 57 (19) (2009) 5730-5738.
DOI URL |
| [70] |
S. Qin, C. Chen, G. Zhang, W. Wang, Z. Wang, Mater. Sci. Eng. A 272 (2) (1999) 363-370.
DOI URL |
| [71] |
V.A. Romanova, R.R. Balokhonov, S. Schmauder, Acta Mater. 57 (1) (2009) 97-107.
DOI URL |
| [72] |
Z.Z. Shi, X.X. Gao, H.J. Zhang, X.F. Liu, H.Y. Li, C. Zhou, Y.X. Yin, L.N. Wang, Bioact. Mater. 5 (2) (2020) 210-218.
DOI PMID |
| [73] |
W. Bednarczyk, J. Kawałko, M. Wątroba, P. Bała, Mater. Sci. Eng. A 723 (2018) 126-133.
DOI URL |
| [74] |
E. Mostaed, M.S. Ardakani, M. Sikora-Jasinska, J.W. Drelich, Mater. Lett. 244 (2019) 203-206.
DOI PMID |
| [75] | K. Wang, X. Tong, J. Lin, A. Wei, Y. Li, M. Dargusch, C. Wen, J. Mater. Sci. Tech-nol. 74 (2021) 216-229. |
| [76] |
L. Li, C. Liu, H. Jiao, L. Yang, F. Cao, X. Wang, J. Cui, J. Alloy. Compd. 888 (2021) 161529.
DOI URL |
| [77] |
G.S. Frankel, J. Electrochem. Soc. 145 (6) (1998) 2186-2198.
DOI URL |
| [78] | D.A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Up-per Saddle River, NJ, 1996. |
| [79] |
Y. Garbatov, C. Guedes Soares, J. Parunov, J. Kodvanj, Corros. Sci. 85 (2014) 296-303.
DOI URL |
| [80] |
Y.C. Ou, Y.T.T. Susanto, H. Roh, Constr. Build. Mater. 103 (2016) 93-104.
DOI URL |
| [81] |
J. Zhang, X.H. Shi, C.Guedes Soares, Eng. Struct. 152 (2017) 70-86.
DOI URL |
| [82] |
L. Xiang, J. Pan, S. Chen, Results Phys. 9 (2018) 463-470.
DOI URL |
| [83] |
W. Zhu, R. François, C.S. Poon, J.G. Dai, Constr. Build. Mater. 148 (2017) 297-306.
DOI URL |
| [84] |
X. Liang, J. Sheng, K. Wang, Results Phys. 14 (2019) 102520.
DOI URL |
| [1] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
| [2] | Yang Xue, Jun Chen, Lan Zhang, Yong Han. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2021, 88(0): 240-249. |
| [3] | Ming-Shi Song, Rong-Chang Zeng, Yun-Fei Ding, Rachel W. Li, Mark Easton, Ivan Cole, Nick Birbilis, Xiao-Bo Chen. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review [J]. J. Mater. Sci. Technol., 2019, 35(4): 535-544. |
| [4] | Zheng Wang, Qingke Zhang, Robabeh Bagheri, Pushan Guo, Yirong Yao, Lijing Yang, Zhenlun Song. Influence of laser surface remelting on microstructure and degradation mechanism in simulated body fluid of Zn-0.5Zr alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2705-2713. |
| [5] | Junxiu Chen, Jiahui Dong, Huameng Fu, Haifeng Zhang, Lili Tan, Dewei Zhao, Ke Yang. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect [J]. J. Mater. Sci. Technol., 2019, 35(10): 2254-2262. |
| [6] | Cijun Shuai, Long Liu, Mingchun Zhao, Pei Feng, Youwen Yang, Wang Guo, Chengde Gao, Fulai Yuan. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique [J]. J. Mater. Sci. Technol., 2018, 34(10): 1944-1952. |
| [7] | Liu Jing,Xi Tingfei. Enhanced Anti-corrosion Ability and Biocompatibility of PLGA Coatings on MgZnYNd Alloy by BTSE-APTES Pre-treatment for Cardiovascular Stent [J]. J. Mater. Sci. Technol., 2016, 32(9): 845-857. |
| [8] | Liu Jingqun,Li Jiyan,Ye Jiandong. Properties and Cytocompatibility of Anti-Washout Calcium Phosphate Cement by Introducing Locust Bean Gum [J]. J. Mater. Sci. Technol., 2016, 32(10): 1021-1026. |
| [9] | Qiang Wang, Lili Tan, Ke Yang. Cytocompatibility and Hemolysis of AZ31B Magnesium Alloy with Si-containing Coating [J]. J. Mater. Sci. Technol., 2015, 31(8): 845-851. |
| [10] | Zheng Ma, Ling Ren, Rui Liu, Ke Yang, Yu Zhang, Zhenhua Liao, Weiqiang Liu, Min Qi, R.D.K. Misra. Effect of Heat Treatment on Cu Distribution, Antibacterial Performance and Cytotoxicity of Ti-6Al-4V-5Cu Alloy [J]. J. Mater. Sci. Technol., 2015, 31(7): 723-732. |
| [11] | F.Y. Zhou, K.J. Qiu, D. Bian, Y.F. Zheng, J.P. Lin. A Comparative in vitro Study on Biomedical Zre2.5X (X [ Nb, Sn) Alloys [J]. J. Mater. Sci. Technol., 2014, 30(4): 299-306. |
| [12] | A. Miklaszewski, M.U. Jurczyk, M. Jurczyk. Microstructural Development of Ti-B Alloyed Layer for Hard Tissue Applications [J]. J. Mater. Sci. Technol., 2013, 29(6): 565-572. |
| [13] | Jing CHANG, Wanshun LIU, Baoqin HAN, Bing LIU. Biological Properties of Chitosan Films with Different Degree of Deacetylation [J]. J Mater Sci Technol, 2008, 24(05): 700-708. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
