J. Mater. Sci. Technol. ›› 2022, Vol. 123: 92-112.DOI: 10.1016/j.jmst.2022.01.020
• Research Article • Previous Articles Next Articles
Y. Tao, Z. Zhang, P. Xue, D.R. Ni(), B.L. Xiao, Z.Y. Ma(
)
Received:
2021-11-01
Revised:
2021-12-14
Accepted:
2022-01-19
Published:
2022-10-01
Online:
2022-09-30
Contact:
D.R. Ni,Z.Y. Ma
About author:
zyma@imr.ac.cn (Z.Y. Ma).Y. Tao, Z. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints[J]. J. Mater. Sci. Technol., 2022, 123: 92-112.
Cooling method | Rotation rate(rpm) | Traverse speed(mm/min) | Designation |
---|---|---|---|
Air cooling | 800 | 200 | AC-800-200 |
1200 | 200 | AC-1200-200 | |
1200 | 50 | AC-1200-50 | |
Air cooling, followed by post weld artificial aging | 800 | 200 | AC-800-200-AA |
1200 | 200 | AC-1200-200-AA | |
1200 | 50 | AC-1200-50-AA | |
Water cooling | 800 | 200 | WC-800-200 |
1200 | 200 | WC-1200-200 | |
1200 | 50 | WC-1200-50 |
Table 1. Welding parameters of FSW 2198-T8 joints.
Cooling method | Rotation rate(rpm) | Traverse speed(mm/min) | Designation |
---|---|---|---|
Air cooling | 800 | 200 | AC-800-200 |
1200 | 200 | AC-1200-200 | |
1200 | 50 | AC-1200-50 | |
Air cooling, followed by post weld artificial aging | 800 | 200 | AC-800-200-AA |
1200 | 200 | AC-1200-200-AA | |
1200 | 50 | AC-1200-50-AA | |
Water cooling | 800 | 200 | WC-800-200 |
1200 | 200 | WC-1200-200 | |
1200 | 50 | WC-1200-50 |
Fig. 3. Cross-sectional macrographs of FSW 2198-T8 joints: (a) AC-800-200, (b) AC-1200-200, (c) AC-1200-50, (d) WC-800-200, (e) WC-1200-200 and (f) WC-1200-50.
Fig. 6. Hardness profiles of FSW 2198-T8 joints exhibiting (a) effect of welding parameter under air cooling condition; effect of post weld artificial aging and water cooling at (b) 800 rpm-200 mm/min, (c) 1200 rpm-200 mm/min and (d) 1200 rpm-50 mm/min.
Sample | UTS (MPa) | YS (MPa) | El. (%) | Joint efficiency (%) |
---|---|---|---|---|
BM | 488.5 ± 0.2 | 417.5 ± 21.9 | 16.9 ± 0.5 | - |
AC-800-200 | 397.2 ± 0.1 | 262.3 ± 6.5 | 9.1 ± 0.2 | 81.3 |
AC-800-200-AA | 423.9 ± 0.5 | 386.1 ± 0.4 | 4.5 ± 0.4 | 86.8 |
WC-800-200 | 384.9 ± 0.6 | 277.1 ± 0.6 | 8.0 ± 0.3 | 78.8 |
AC-1200-200 | 388.9 ± 4.8 | 271.2 ± 0.0 | 6.0 ± 0.4 | 79.6 |
AC-1200-200-AA | 426.5 ± 2.0 | 387.4 ± 1.2 | 3.2 ± 0.7 | 87.3 |
WC-1200-200 | 390.6 ± 3.5 | 286.3 ± 1.9 | 5.0 ± 0.4 | 80.0 |
AC-1200-50 | 388.7 ± 1.9 | 256.6 ± 2.7 | 9.0 ± 0.3 | 79.6 |
AC-1200-50-AA | 410.7 ± 1.2 | 358.5 ± 1.2 | 4.2 ± 0.4 | 84.1 |
WC-1200-50 | 379.7 ± 1.9 | 267.9 ± 0.6 | 7.4 ± 1.1 | 77.7 |
Table 2. Transverse tensile properties of FSW 2198-T8 joints.
Sample | UTS (MPa) | YS (MPa) | El. (%) | Joint efficiency (%) |
---|---|---|---|---|
BM | 488.5 ± 0.2 | 417.5 ± 21.9 | 16.9 ± 0.5 | - |
AC-800-200 | 397.2 ± 0.1 | 262.3 ± 6.5 | 9.1 ± 0.2 | 81.3 |
AC-800-200-AA | 423.9 ± 0.5 | 386.1 ± 0.4 | 4.5 ± 0.4 | 86.8 |
WC-800-200 | 384.9 ± 0.6 | 277.1 ± 0.6 | 8.0 ± 0.3 | 78.8 |
AC-1200-200 | 388.9 ± 4.8 | 271.2 ± 0.0 | 6.0 ± 0.4 | 79.6 |
AC-1200-200-AA | 426.5 ± 2.0 | 387.4 ± 1.2 | 3.2 ± 0.7 | 87.3 |
WC-1200-200 | 390.6 ± 3.5 | 286.3 ± 1.9 | 5.0 ± 0.4 | 80.0 |
AC-1200-50 | 388.7 ± 1.9 | 256.6 ± 2.7 | 9.0 ± 0.3 | 79.6 |
AC-1200-50-AA | 410.7 ± 1.2 | 358.5 ± 1.2 | 4.2 ± 0.4 | 84.1 |
WC-1200-50 | 379.7 ± 1.9 | 267.9 ± 0.6 | 7.4 ± 1.1 | 77.7 |
Fig. 8. Macrographic fractographs of FSW 2198-T8 joints: (a) AC-1200-200, (b) AC-1200-50, (c) AC-1200-200-AA, (d) AC-1200-50-AA, (e) WC-1200-200 and (f) WC-1200-50.
Fig. 9. Magnified fractographs of specific positions in Fig. 8: (a) and (b) magnified and further magnified images of the areas marked by arrows; (c) position A, (d) position B and (e) position C.
Precipitate | Crystal structure | Morphology | Orientation | Refs. |
---|---|---|---|---|
T1 (Al2CuLi) | Hexagonal | Platelete (front view), Needle-like (side view) | (0001)∥(111)Al | |
[10-10]∥[-110]Al | ||||
[22,53] | ||||
θ′ (Al2Cu) | Tetragonal | Platelete (front view), Needle-like (side view) | [001]∥[100]Al | [22,53] |
S′ (Al2CuMg) | Orthorhombic | Lath | [100]∥[100]Al | [ |
[010]∥[02-1]Al | ||||
[001]∥[012]Al | ||||
δ′ (Al3Li) | L12 | Spherical | (111)∥(111)Al | [ |
β′ (Al3Zr) | L12 | Spherical | (111)∥(111)Al | [ |
Table 3. Crystal structure and precipitation characteristics for precipitates in Al-Cu-Li-Mg-Ag-Zr alloys.
Precipitate | Crystal structure | Morphology | Orientation | Refs. |
---|---|---|---|---|
T1 (Al2CuLi) | Hexagonal | Platelete (front view), Needle-like (side view) | (0001)∥(111)Al | |
[10-10]∥[-110]Al | ||||
[22,53] | ||||
θ′ (Al2Cu) | Tetragonal | Platelete (front view), Needle-like (side view) | [001]∥[100]Al | [22,53] |
S′ (Al2CuMg) | Orthorhombic | Lath | [100]∥[100]Al | [ |
[010]∥[02-1]Al | ||||
[001]∥[012]Al | ||||
δ′ (Al3Li) | L12 | Spherical | (111)∥(111)Al | [ |
β′ (Al3Zr) | L12 | Spherical | (111)∥(111)Al | [ |
Fig. 11. TEM images of the BM: (a) low magnification bright field micrograph, (b) and (c) high magnification bright field micrographs in <110>Al and <100>Al orientations, (d), (e) and (f) SAD patterns of <100>Al, <110>Al and <112>Al zone axes.
Fig. 12. TEM bright filed micrographs of the LHZ of sample (a-c) AC-800-200 and (d-f) AC-800-200-AA: (a) and (d) low magnificaiton images, (b) and (e) high magnification images in <110>Al orientation; (c) and (f) high magnification images in <100>Al orientaiton.
Fig. 13. TEM SAD patterns of the LHZ of sample (a-c) AC-800-200 and (d-f) AC-800-200-AA: (a) and (d) <100>Al zone axis, (b) and (e) <110>Al zone axis, (c) and (f) <112>Al zone axis.
Fig. 14. TEM bright filed micrographs of the TMAZ of sample (a-c) AC-800-200 and (d-f) AC-800-200-AA: (a) and (d) low magnificaiton images, (b) and (e) high magnification images in <110>Al orientation, (c) and (f) high magnification images in <100>Al orientaiton.
Fig. 15. TEM SAD patterns of the TMAZ of sample (a-c) AC-800-200 and (d-f) AC-800-200-AA: (a) and (d) <100>Al zone axis, (b) and (e) <110>Al zone axis, (c) and (f) <112>Al zone axis.
Fig. 16. TEM bright filed micrographs of the NZ of sample (a-c) AC-800-200 and (d-f) AC-800-200-AA: (a) and (d) low magnificaiton images; (b) and (e) high magnification images in <110>Al orientation; (c) and (f) high magnification images in <100>Al orientation.
Fig. 17. TEM SAD patterns of the NZ of sample (a-c) AC-800-200 and (d-f) AC-800-200-AA: (a) and (d) <100>Al zone axis, (b) and (e) <110>Al zone axis, (c) and (f) <112>Al zone axis.
Fig. 18. TEM images of the NZ of sample WC-800-200: (a) low magnification bright field micrograph; (b) high magnification bright field micrograph in <100>Al orientation; (c) SAD patterns of <100>Al zone axis.
Region | Sample | Precipitate evolution |
---|---|---|
BM | — | T1, θ′ and δ′/β′ |
LHZ | AC-800-200 | T1 and θ′ partially dissolved |
AC-800-200-AA | (1) pre-existing T1 and θ′ coarsened | |
(2) T1 and θ′ precipitated | ||
TMAZ | AC-800-200 | (1) T1 further dissolved and θ′ completely dissolved |
(2) δ′/β′ reprecipitated | ||
AC-800-200-AA | (1) The pre-existing T1 coarsened and δ′/β′ dissolved | |
(2) T1, θ′ and S′ precipitated | ||
NZ | AC-800-200 | (1) T1, θ′ and δ′/β′ completely dissolved |
(2) δ′/β′ and GP zones reprecipitated | ||
AC-800-200-AA | (1) pre-existing δ′/β′ dissolved | |
(2) T1, θ′ and S′ precipitated | ||
(3) θ formed | ||
WC-800-200 | (1) T1, θ′ and δ′/β′ completely dissolved | |
(2) δ′/β′ and GP zones reprecipitated |
Table 4. Summary of precipitate evolution in various zones of FSW 2198-T8 joints.
Region | Sample | Precipitate evolution |
---|---|---|
BM | — | T1, θ′ and δ′/β′ |
LHZ | AC-800-200 | T1 and θ′ partially dissolved |
AC-800-200-AA | (1) pre-existing T1 and θ′ coarsened | |
(2) T1 and θ′ precipitated | ||
TMAZ | AC-800-200 | (1) T1 further dissolved and θ′ completely dissolved |
(2) δ′/β′ reprecipitated | ||
AC-800-200-AA | (1) The pre-existing T1 coarsened and δ′/β′ dissolved | |
(2) T1, θ′ and S′ precipitated | ||
NZ | AC-800-200 | (1) T1, θ′ and δ′/β′ completely dissolved |
(2) δ′/β′ and GP zones reprecipitated | ||
AC-800-200-AA | (1) pre-existing δ′/β′ dissolved | |
(2) T1, θ′ and S′ precipitated | ||
(3) θ formed | ||
WC-800-200 | (1) T1, θ′ and δ′/β′ completely dissolved | |
(2) δ′/β′ and GP zones reprecipitated |
[1] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
[2] |
Y. Wang, S. Zhang, R. Wu, N. Turakhodjaev, L. Hou, J. Zhang, S. Betsofen, J. Mater. Sci. Technol. 61 (2021) 197-203.
DOI URL |
[3] |
M.X. Milagre, U. Donatus, N.V. Mogili, R. M.P. Silva, B. V.G. de Viveiros, V. F. Pereira, R.A. Antunes. C.S.C. Machado, J.V.S. Araujo, I. Costa, J. Mater. Sci. Technol. 45 (2020) 162-175.
DOI |
[4] |
A. Steuwer, M. Dumont, J. Altenkirch, S. Birosca, A. Deschamps, P.B. Prangnell, P.J. Withers, Acta Mater. 59 (2011) 3002-3011.
DOI URL |
[5] |
S.D. Ji, Q. Wen, Z.W. Li, J. Mater. Sci. Technol. 48 (2020) 23-30.
DOI |
[6] |
S.M.A.K. Mohammed, Y.D. Jaya, A. Albedah, X.Q. Jiang, D.Y. Li, D.L. Chen, Int. J. Fatigue 141 (2020) 105869.
DOI URL |
[7] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
DOI URL |
[8] |
S.D. Ji, Y.Y. Jin, Y.M. Yue, S.S. Gao, Y.X. Huang, L. Wang, J. Mater. Sci. Technol. 29 (2013) 955-960.
DOI |
[9] |
R.W. Fonda, J.F. Bingert, Metall. Mater. Trans. A 37 (2006) 3593-3604.
DOI URL |
[10] |
A.K. Shukla, W.A. Baeslack, Sci. Technol. Weld. Join. 14 (2009) 376-387.
DOI URL |
[11] | F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Tech- nol 34 (2018) 39-57. |
[12] |
E.A. El-Danaf, M.M. El-Rayes, Mater. Des. 46 (2013) 561-572.
DOI URL |
[13] |
Z. Zhang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 614 (2014) 6-15.
DOI URL |
[14] |
Z. Zhang, B.L. Xiao, Z.Y. Ma, Mater. Charact. 106 (2015) 255-265.
DOI URL |
[15] |
R.D. Fu, Z.Q. Sun, R.C. Sun, Y. Li, H.J. Liu, L. Liu, Mater. Des. 32 (2011) 4825-4831.
DOI URL |
[16] |
M.B. Lezaack, A. Simar, Mater. Sci. Eng. A 807 (2021) 140901.
DOI URL |
[17] |
H. Lin, Y. Wu, S. Liu, X. Zhou, Mater. Charact. 141 (2018) 74-85.
DOI URL |
[18] |
H.J. Liu, Y.C. Chen, J.C. Feng, Mater. Sci. Technol. 22 (2006) 237-241 -lond.
DOI URL |
[19] |
C. Sharma, D.K. Dwivedi, P. Kumar, Mater. Des. 43 (2013) 134-143.
DOI URL |
[20] |
S. Sinhmar, D.K. Dwivedi, Mater. Sci. Eng. A 684 (2017) 413-422.
DOI URL |
[21] |
M.A. Wahid, A.N. Siddiquee, Z.A. Khan, N. Sharma, Mater. Res. Express 5 (2018) 046512.
DOI URL |
[22] |
K.S. Kumar, S.A. Brown, J.R. Pickens, Acta Mater. 44 (1996) 1899-1915.
DOI URL |
[23] |
S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 662 (2016) 136-143.
DOI URL |
[24] |
Y. Lin, C. Lu, C. Wei, Z. Zheng, Adv. Eng. Mater. 20 (2018) 1700652.
DOI URL |
[25] |
B. Malard, F. De Geuser, A. Deschamps, Acta Mater. 101 (2015) 90-100.
DOI URL |
[26] |
H. Sidhar, N.Y. Martinez, R.S. Mishra, J. Silvanus, Mater. Des. 106 (2016) 146-152.
DOI URL |
[27] |
H. Sidhar, R.S. Mishra, Mater. Des. 110 (2016) 60-71.
DOI URL |
[28] |
J. Zhang, X.S. Feng, J.S. Gao, H. Huang, Z.Q. Ma, L.J. Guo, J. Mater. Sci. Technol. 34 (2018) 219-227.
DOI |
[29] |
C. Gao, Z. Zhu, J. Han, H. Li, Mater. Sci. Eng. A 639 (2015) 489-499.
DOI URL |
[30] |
T. Le Jolu, T.F. Morgeneyer, A.F. Gourgues-Lorenzon, Sci. Technol. Weld. Join. 15 (2010) 694-698.
DOI URL |
[31] |
W. Li, R. Jiang, Z. Zhang, Y.E. Ma, Adv. Eng. Mater. 15 (2013) 1051-1058.
DOI URL |
[32] |
N. Nayan, M. Yadava, R. Sarkar, S.V.S.N. Murty, N.P. Gurao, S. Mahesh, M. J.N.V. Prasad, I. Samajdar, Mater. Charact. 159 (2020) 110002.
DOI URL |
[33] | J. Rao, E.J. Payton, C. Somsen, K. Neuking, G. Eggeler, A. Kostka, J.F. dos Santos, Adv. Eng. Mater. 12 (2010) 298-303. |
[34] |
Y. Tao, D.R. Ni, B.L. Xiao, Z.Y. Ma, W. Wu, R.X. Zhang, Y.S. Zeng, Mater. Sci. Eng. A 693 (2017) 1-13.
DOI URL |
[35] |
H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang, Y. Zhao, Mater. Sci. Eng. A 433 (2006) 64-69.
DOI URL |
[36] |
Y. Tao, Z. Zhang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 612 (2014) 236-245.
DOI URL |
[37] |
Z. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 44 (2013) 4081-4097.
DOI URL |
[38] |
S.R. Ren, Z.Y. Ma, L.Q. Chen, Mater. Sci. Eng. A 479 (2008) 293-299.
DOI URL |
[39] |
Y.S. Sato, H. Takauchi, S.H.C. Park, H. Kokawa, Mater. Sci. Eng. A 405 (2005) 333-338.
DOI URL |
[40] |
Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C. Park, H. Kokawa, Scr. Mater. 50 (2004) 365-369.
DOI URL |
[41] |
V. Richter-Trummer, E. Suzano, M. Beltrao, A. Roos, J.F. dos Santos, P.M.S.T. de Castro, Mater. Sci. Eng. A 538 (2012) 81-88.
DOI URL |
[42] |
R.W. Fonda, J.F. Bingert, Metall. Mater. Trans. A 35 (2004) 1487-1499.
DOI URL |
[43] |
B. Heinz, B. Skrotzki, Metall. Mater. Trans. B 33 (2002) 489-498.
DOI URL |
[44] |
K.V. Jata, K.K. Sankaran, J.J. Ruschau, Metall. Mater. Trans. A 31 (2000) 2181-2192.
DOI URL |
[45] |
P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaca, P. M.S.T. de Castro, Mater. Des. 30 (2009) 180-187.
DOI URL |
[46] |
W. Xu, J. Liu, G. Luan, C. Dong, Mater. Des. 30 (2009) 3460-3467.
DOI URL |
[47] |
A.A. Zadpoor, J. Sinke, R. Benedictus, R. Pieters, Mater. Sci. Eng. A 494 (2008) 281-290.
DOI URL |
[48] |
P.L. Niu, W.Y. Li, D.L. Chen, J. Mater. Sci. Technol. 73 (2021) 91-100.
DOI |
[49] |
A.K. Shukla, W.A. Baeslack, Scr. Mater. 56 (2007) 513-516.
DOI URL |
[50] |
Y. Tao, Z. Zhang, B.H. Yu, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma, Mater. Charact. 168 (2020) 110524.
DOI URL |
[51] |
N. Boukos, E. Flouda, C. Papastaikoudis, J. Mater. Sci. 33 (1998) 3213-3218.
DOI URL |
[52] |
Y. Ma, X. Zhou, G.E. Thompson, T. Hashimoto, P. Thomson, M. Fowles, Mater. Chem. Phys. 126 (2011) 46-53.
DOI URL |
[53] |
H. Li, Y. Tang, Z. Zeng, Z. Zheng, F. Zheng, Mater. Sci. Eng. A 498 (2008) 314-320.
DOI URL |
[54] |
A.K. Mukhopadhyay, Metall. Mater. Trans. A 33 (2002) 3635-3648.
DOI URL |
[55] |
Y. Wang, X. Ma, G. Zhao, X. Xu, X. Chen, C. Zhang, J. Mater. Sci. Technol. 82 (2021) 161-178.
DOI URL |
[56] |
M.J. Starink, N. Gao, N. Kamp, S.C. Wang, P.D. Pitcher, I. Sinclair, Mater. Sci. Eng. A 418 (2006) 241-249.
DOI URL |
[57] |
J.G. Jung, J.S. Park, Y.K. Lee, Met. Mater. Int. 19 (2013) 147-152.
DOI URL |
[58] |
F.C. Liu, Z.Y. Ma, Metall. Mater. Trans. A 39 (2008) 2378-2388.
DOI URL |
[59] | Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid State 43 (2018) 269-333. |
[60] |
S.R. Ren, Z.Y. Ma, L.Q. Chen, Scr. Mater. 56 (2007) 69-72.
DOI URL |
[61] |
Z. Zhang, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. 47 (2012) 4075-4086.
DOI URL |
[62] |
O. Hatamleh, Int. J. Fatigue 31 (2009) 974-988.
DOI URL |
[63] |
H. Liu, Y. Hu, C. Dou, D.P. Sekulic, Mater. Charact. 123 (2017) 9-19.
DOI URL |
[64] |
M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Acta Mater. 51 (2003) 4791-4801.
DOI URL |
[65] |
T.L. Jolu, T.F. Morgeneyer, A. Denquin, M. Sennour, A. Laurent, J. Besson, A.F. Gourgues-Lorenzon, Metall. Mater. Trans. A 45 (2014) 5531-5544.
DOI URL |
[66] |
H. Qin, H. Zhang, H. Wu, Mater. Sci. Eng. A 626 (2015) 322-329.
DOI URL |
[67] |
J.A. Schneider, A.C. Nunes, P.S. Chen, G. Steele, J. Mater. Sci. 40 (2005) 4341-4345.
DOI URL |
[68] |
J. Goebel, M. Reimann, A. Norman, J.F. dos Santos, J. Mater. Process. Technol. 245 (2017) 37-45.
DOI URL |
[69] |
A. Deschamps, M. Garcia, J. Chevy, B. Davo, F. De Geuser, Acta Mater. 122 (2017) 32-46.
DOI URL |
[70] |
O. Frigaard, O. Grong, O.T. Midling, Metall. Mater. Trans. A 32 (2001) 1189-1200.
DOI URL |
[71] |
M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, W.H. Bingel, Metall. Mater. Trans. A 29 (1998) 1955-1964.
DOI URL |
[72] |
C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Acta Mater. 53 (2005) 2447-2458.
DOI URL |
[73] |
W.A. Cassada, G.J. Shiflet, E.A. Starke, Metall. Mater. Trans. A 22 (1991) 299-306.
DOI URL |
[74] |
A. Biswas, D.J. Siegel, C. Wolverton, D.N. Seidman, Acta Mater. 59 (2011) 6187-6204.
DOI URL |
[75] |
S.Y. Hu, M.I. Baskes, M. Stan, L.Q. Chen, Acta Mater. 54 (2006) 4699-4707.
DOI URL |
[76] |
R.D. Schueller, F.E. Wawner, A.K. Sachdev, J. Mater. Sci. 29 (1994) 424-435.
DOI URL |
[77] | P. Shower, J.R. Morris, D. Shin, B. Radhakrishnan, L.F. Allard, A. Shyam, Materi- alia 5 (2019) 100185. |
[78] |
A. Simar, Y. Brechet, B. de Meester, A. Denquin, T. Pardoen, Mater. Sci. Eng. A 486 (2008) 85-95.
DOI URL |
[79] |
Y. Xie, X. Meng, F. Wang, Y. Jiang, X. Ma, L. Wan, Y. Huang, Corros. Sci. 192 (2021) 109800.
DOI URL |
[80] |
H.J. Zhang, H.J. Liu, L. Yu, J. Mater. Eng. Perform. 21 (2012) 1182-1187.
DOI URL |
[1] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[2] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[3] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[4] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[5] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[6] | Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation [J]. J. Mater. Sci. Technol., 2022, 120(0): 139-149. |
[7] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
[8] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[9] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[10] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[11] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[12] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[13] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[14] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[15] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||