J. Mater. Sci. Technol. ›› 2022, Vol. 123: 234-242.DOI: 10.1016/j.jmst.2022.02.018
• Research Article • Previous Articles Next Articles
Yi Yang, Yi Zeng, Tongxin Jin, Xiaohu Zhang*(), Huailong Teng*(
), Shengyao Wang*(
), Hao Chen
Received:
2021-11-20
Revised:
2022-02-11
Accepted:
2022-02-14
Published:
2022-10-01
Online:
2022-09-30
Contact:
Xiaohu Zhang,Huailong Teng,Shengyao Wang
About author:
thlong@mail.hzau.edu.cn (H. Teng),Yi Yang, Yi Zeng, Tongxin Jin, Xiaohu Zhang, Huailong Teng, Shengyao Wang, Hao Chen. Construction of oxygen vacancy on Bi12O17Cl2 nanosheets by heat-treatment in H2O vapor for photocatalytic NO oxidation[J]. J. Mater. Sci. Technol., 2022, 123: 234-242.
Fig. 2. TEM images of (a) C-Bi12O17Cl2 and (b) Bi12O17Cl2-H2O; AFM images of (c) C-Bi12O17Cl2 and (d) Bi12O17Cl2-H2O; (e) HRTEM of Bi12O17Cl2-H2O; (f) element mapping of Bi12O17Cl2-H2O.
Fig. 3. (a) EPR spectra of oxygen vacancies; (b) survey XPS spectra; high-resolution XPS spectra of (c) C 1s, (d) O 1s, (d) Bi 4f and (e) Cl 2p for C-Bi12O17Cl2 and Bi12O17Cl2-H2O.
Fig. 4. Comparison of NO removal ratio (a) and residual amount of NO2 (b) during photocatalysis experiments for BiOCl-control, C-Bi12O17Cl2, Bi12O17Cl2-Ar and Bi12O17Cl2-H2O.
Fig. 6. Diffuse reflectance ultraviolet-visible spectra with the inset of (αhν)1/2 versus photon energy (hν) (a), photocurrent tests (b), EIS (c) and steady state photoluminescence (PL) spectra (d) of C-Bi12O17Cl2 and Bi12O17Cl2-H2O.
Fig. 7. Influence of series of scavengers on the photocatalytic NO removal ratio (a) NO2 residual amount (b) and NO2 residual ratio calculated according to Eq. (1) (c) of Bi12O17Cl2-H2O.
[1] |
J. Becher, D.F. Sanchez, D.E. Doronkin, D. Zengel, D.M. Meira, S. Pascarelli, J. D. Grunwaldt, T.L. Sheppard, Nat. Catal. 4 (2020) 46-53.
DOI URL |
[2] |
Z. Lian, J. Wei, W. Shan, Y. Yu, P.M. Radjenovic, H. Zhang, G. He, F. Liu, J.F. Li, Z.Q. Tian, H. He, J. Am. Chem. Soc. 143 (2021) 10454-10461.
DOI URL |
[3] |
X. Zhang, L. Han, H. Chen, S. Wang, Chin. Chem. Lett. 33 (2021) 1117-1130.
DOI URL |
[4] |
W. Sun, Y. Xiang, Z. Jiang, S. Wang, N. Yang, S. Jin, L. Sun, H. Teng, H. Chen, Sci. Bull. 67 (2022) 61-70.
DOI URL |
[5] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
[6] |
J.K. Lai, I.E. Wachs, ACS Catal. 8 (2018) 6537-6551.
DOI URL |
[7] |
J. Long, Y. Zhang, C. Guo, X. Fu, J. Xiao, Angew. Chem. Int. Ed. 59 (2020) 9711-9718.
DOI PMID |
[8] |
D. Liu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Angew. Chem. Int. Ed. 59 (2020) 4519-4524.
DOI URL |
[9] |
G. Cheng, X. Liu, X. Song, X. Chen, W. Dai, R. Yuan, X. Fu, Appl. Catal. B Environ. 277 (2020) 119196.
DOI URL |
[10] |
P. Zhang, Y. Huang, Y. Rao, M. Chen, X. Li, W. Ho, S. Lee, J. Cao, Chem. Eng. J. 406 (2021) 126910.
DOI URL |
[11] |
H. Ma, Y. He, X. Li, J. Sheng, J. Li, F. Dong, Y. Sun, Appl. Catal. B Environ. 292 (2021) 120159.
DOI URL |
[12] | H. Wu, C. Yuan, R. Chen, J. Wang, F. Dong, J. Li, Y. Sun, ACS Appl. Mater. Inter- faces 12 (2020) 43741-43749. |
[13] |
M. Kou, Y. Deng, R. Zhang, L. Wang, P.K. Wong, F. Su, L. Ye, Chin. J. Catal. 41 (2020) 1480-1487.
DOI URL |
[14] |
Y. Wang, K. Wang, J. Wang, X. Wu, G. Zhang, J. Mater. Sci. Technol. 56 (2020) 236-243.
DOI URL |
[15] |
J. Zhang, H. Tao, S. Wu, J. Yang, M. Zhu, Appl. Catal. B Environ. 296 (2021) 120372.
DOI URL |
[16] |
C. Wang, M. Fu, J. Cao, X. Wu, X. Hu, F. Dong, Chem. Eng. J. 385 (2020) 123833.
DOI URL |
[17] |
M. Liu, K. Jiang, X. Ding, S. Wang, C. Zhang, J. Liu, Z. Zhan, G. Cheng, B. Li, H. Chen, S. Jin, B. Tan, Adv. Mater. 31 (2019) 1807865.
DOI URL |
[18] |
Y. Xiang, X. Zhang, X. Wang, X. Ding, D. Huang, H. Chen, J. Catal. 357 (2018) 188-194.
DOI URL |
[19] |
Z. Gu, Z. Cui, Z. Wang, T. Chen, P. Sun, D. Wen, J. Mater. Sci. Technol. 83 (2021) 113-122.
DOI URL |
[20] |
Q. Chen, H. Long, M. Chen, Y. Rao, X. Li, Y. Huang, Appl. Catal. B Environ. 272 (2020) 119008.
DOI URL |
[21] |
Y. Ren, Y. Li, X. Wu, J. Wang, G. Zhang, Chin. J. Catal. 42 (2021) 69-77.
DOI URL |
[22] |
Y. Liu, Y. Zhou, S. Yu, Z. Xie, Y. Chen, K. Zheng, S. Mossin, W. Lin, J. Meng, T. Pullerits, K. Zheng, ACS Appl. Nano Mater. 3 (2020) 772-781.
DOI URL |
[23] |
H. Shang, S. Huang, H. Li, M. Li, S. Zhao, J. Wang, Z. Ai, L. Zhang, Chem. Eng. J. 386 (2020) 124047.
DOI URL |
[24] |
Z. Gu, Z. Cui, Z. Wang, K.S. Qin, Y. Asakura, T. Hasegawa, S. Tsukuda, K. Hongo, R. Maezono, S. Yin, Appl. Catal. B Environ. 279 (2020) 119376.
DOI URL |
[25] |
Y. Li, M. Gu, M. Zhang, X. Zhang, K. Lv, Y. Liu, W. Ho, F. Dong, Chem. Eng. J. 389 (2020) 124421.
DOI URL |
[26] |
F. Rao, G. Zhu, W. Zhang, J. Gao, F. Zhang, Y. Huang, M. Hojamberdiev, Appl. Catal. B Environ. 281 (2021) 119481.
DOI URL |
[27] |
S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye, Adv. Mater. 29 (2017) 1701774.
DOI URL |
[28] |
S.W. Xiang, L. Yang, T. Chen, N. Yang, K. Jiang, P. Wang, S. Li, X. Ding, H. Chen, Chin. J. Catal. 42 (2021) 1013-1023.
DOI URL |
[29] |
H. Shang, M. Li, H. Li, S. Huang, C. Mao, Z. Ai, L. Zhang, Environ. Sci. Technol. 53 (2019) 6444-6453.
DOI PMID |
[30] |
H. Li, H. Shang, X. Cao, Z. Yang, Z. Ai, L. Zhang, Environ. Sci. Technol. 52 (2018) 8659-8665.
DOI URL |
[31] |
H. Li, H. Shang, Y. Li, X. Cao, Z. Yang, Z. Ai, L. Zhang, Environ. Sci. Technol. 53 (2019) 6964-6971.
DOI URL |
[32] |
P. Chen, H. Liu, Y. Sun, J. Li, W. Cui, L.A. Wang, W. Zhang, X. Yuan, Z. Wang, Y. Zhang, F. Dong, Appl. Catal. B Environ. 264 (2020) 118545.
DOI URL |
[33] |
S. Wang, X. Ding, N. Yang, G. Zhan, X. Zhang, G. Dong, L. Zhang, H. Chen, Appl. Catal. B Environ. 265 (2020) 118585.
DOI URL |
[34] |
S. Wang, X. Ding, X. Zhang, H. Pang, X. Hai, G. Zhan, W. Zhou, H. Song, L. Zhang, H. Chen, J. Ye, Adv. Funct. Mater. 27 (2017) 1703923.
DOI URL |
[35] |
W. Zhang, X.A. Dong, B. Jia, J. Zhong, Y. Sun, F. Dong, Appl. Surf. Sci. 430 (2018) 571-577.
DOI URL |
[36] |
X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331 (2011) 746-750.
DOI URL |
[37] |
Z. Zhao, Y. Cao, F. Dong, F. Wu, B. Li, Q. Zhang, Y. Zhou, Nanoscale 11 (2019) 6360-6367.
DOI URL |
[38] |
W. Zhang, X. Dong, B. Jia, J. Zhong, Y. Sun, F. Dong, Appl. Surf. Sci. 430 (2018) 571-577.
DOI URL |
[39] |
L. Wang, D. Lv, F. Dong, X. Wu, N. Cheng, J. Scott, X. Xu, W. Hao, Y. Du, ACS Sustain. Chem. Eng. 7 (2019) 3010-3017.
DOI |
[40] | P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Adv. Funct. Mater. 29 (2019) 190 0 093. |
[41] |
J. Wang, L. Xu, T. Wang, R. Li, Y. Zhang, J. Zhang, T. Peng, Adv. Energy Mater. 11 (2021) 2003575.
DOI URL |
[42] |
J. Wang, L. Xu, T. Wang, S. Chen, Z. Jiang, R. Li, Y. Zhang, T. Peng, Adv. Funct. Mater. 31 (2021) 2009819.
DOI URL |
[43] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[44] |
S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296-336.
DOI URL |
[45] |
D. Zhao, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Nat. Energy 6 (2021) 388-397.
DOI URL |
[46] |
T. Wang, L. Guo, Z. Jiang, S. Chen, S. Xu, Y. Zhang, J. Zhang, R. Li, T. Peng, Adv. Funct. Mater. 31 (2021) 2107290.
DOI URL |
[47] |
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
[48] |
X. Shi, P. Wang, W. Li, Y. Bai, H. Xie, Y. Zhou, L. Ye, Appl. Catal. B Environ. 243 (2019) 322-329.
DOI URL |
[49] |
X. Yang, S. Wang, T. Chen, N. Yang, K. Jiang, P. Wang, H. Chen, Chin. J. Catal. 42 (2021) 1013-1023.
DOI URL |
[1] | Xudong He, Qinqin Liu, Difa Xu, Lele Wang, Hua Tang. Plasmonic TiN nanobelts assisted broad spectrum photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 116(0): 1-10. |
[2] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[3] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
[4] | Huaze Zhu, Yongqiang Yang, Yuyang Kang, Ping Niu, Xiangdong Kang, Zhiqing Yang, Hengqiang Ye, Gang Liu. Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites [J]. J. Mater. Sci. Technol., 2022, 102(0): 1-7. |
[5] | Xi. Rao, L. Du, J.J. Zhao, X.D. Tan, Y.X. Fang, L.Q. Xu, Y.P. Zhang. Hybrid TiO2/AgNPs/g-C3N4 nanocomposite coatings on TC4 titanium alloy for enhanced synergistic antibacterial effect under full spectrum light [J]. J. Mater. Sci. Technol., 2022, 118(0): 35-43. |
[6] | Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 118(0): 54-63. |
[7] | Zhiwei Zhao, Xiaofeng Li, Kai Dai, Jinfeng Zhang, Graham Dawson. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance [J]. J. Mater. Sci. Technol., 2022, 117(0): 109-119. |
[8] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
[9] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
[10] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[11] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[12] | Kaiqiang Xu, Jie Shen, Shiying Zhang, Difa Xu, Xiaohua Chen. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin [J]. J. Mater. Sci. Technol., 2022, 121(0): 236-244. |
[13] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[14] | Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. J. Mater. Sci. Technol., 2022, 114(0): 240-248. |
[15] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||