J. Mater. Sci. Technol. ›› 2022, Vol. 123: 243-256.DOI: 10.1016/j.jmst.2022.02.019
• Research Article • Previous Articles Next Articles
Kezhen Qia, Chunqiang Zhuangb,*(), Manjie Zhangc,*(
), Peyman Gholamid, Alireza Khataeee,f,**(
)
Received:
2021-10-31
Revised:
2022-02-05
Accepted:
2022-02-14
Published:
2022-10-01
Online:
2022-09-30
Contact:
Chunqiang Zhuang,Manjie Zhang,Alireza Khataee
About author:
**Department of Applied Chemistry, Faculty of Chemistry, Research Laboratory of Advanced Water and Wastewater Treatment Processes, University of Tabriz, Tabriz 51666-16471, Iran.E-mail addresses: a_khataee@tabrizu.ac.ir (A.Khataee).Kezhen Qi, Chunqiang Zhuang, Manjie Zhang, Peyman Gholami, Alireza Khataee. Sonochemical synthesis of photocatalysts and their applications[J]. J. Mater. Sci. Technol., 2022, 123: 243-256.
No. | Type of catalyst | Experimental conditions | Findings | Refs. |
---|---|---|---|---|
1 | CdS/COF | pH = 7CdS/COF dosage = 0.3 g/L | The specific surface area of CdS/COF was enhanced from 51 to 600 m2/g by adding various amounts of COF up to 10 wt%. After a reaction time of 180 min, the 85.68% degradation efficiency of Bisphenol-A was achieved. Among different synthesized CdS/COF materials, the photocatalyst with 0.5 wt% COF had the greatest efficient activity. | [ |
2 | ZnS/PTA | RhB concentration = 10 mg/LZnS/PTA amount = 0.05 gLight source: 300 W xenon lamp with the light filter of UVREF (200-400 nm) and UVIRCUT420 (420-780 nm) | The incorporation of PTA into ZnS structure was proved by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared (FT-IR) and transmission electron microscopy - energy disperse spectroscopy (TEM-EDS) analyses. ZnS/PTA nanocomposites showed a narrower band gap, and considerable improvement in visible light absorption compared to that of pure ZnS. ZnS/PTA nanocomposite displayed higher photocatalytic performance with RhB degradation efficiency of 78.59% within 120 min illumination under simulated sunlight. | [ |
3 | Mg- and Zn-doped PbS | MB concentration = 10-5 mol/LMg- and Zn-doped PbS amount = 0.05 g/LLight source: UVC lamps (15 W, 240-260 nm wavelength) | Doping improves visible light absorption, and as a result, decreases the bandgap energy of PbS. The catalytic performance was considerably affected by inhibiting the recombination of electron/hole pairs providing further holes available on PbS surface and increasing the formation of reactive species for the decomposition of organic contaminants. | [ |
4 | ZnS QDs | pH = 11Crystalline violet (CV) concentration = 10 mg/LZnS QDs amount = 5 mg | It was concluded that the synthesis time could be remarkably decreased. Experimental findings revealed that ZnS QDs could be reused for at least five successive cycles, with no considerable decline in photocatalytic activity. The kinetics and possible mechanism of CV degradation were studied. The high regression coefficient values (>0.98) for the pseudo-first-order kinetic model were achieved to express the degradation of CV by using ZnS QD photocatalyst. The apparent rate constant (kapp) was calculated to be 2.63 × 10-2-3.61 × 10-2 min-1 depending on operational conditions. | [ |
5 | Tb-doped CdSe | RB5 concentration = 20 mg/LTb-doped CdSe dosage = 1 g/L | The addition of benzoquinone and ammonium oxalate resulted in considerably decreased degradation of RB5. Photogenerated superoxide radicals and holes were found to be the major reactive species. The experimental parameters were investigated and optimized by using a five-level Central Composite Design (CCD) model. Based on the results obtained from ANOVA analysis, higher regression coefficient values proved the accuracy of the studied model to estimate the decolorization efficiency of RB5 during sonophotocatalysis. | [ |
Table 1. Degradation of different organic pollutants by using metal chalcogenides-based photocatalysts synthesized via sonochemical methods.
No. | Type of catalyst | Experimental conditions | Findings | Refs. |
---|---|---|---|---|
1 | CdS/COF | pH = 7CdS/COF dosage = 0.3 g/L | The specific surface area of CdS/COF was enhanced from 51 to 600 m2/g by adding various amounts of COF up to 10 wt%. After a reaction time of 180 min, the 85.68% degradation efficiency of Bisphenol-A was achieved. Among different synthesized CdS/COF materials, the photocatalyst with 0.5 wt% COF had the greatest efficient activity. | [ |
2 | ZnS/PTA | RhB concentration = 10 mg/LZnS/PTA amount = 0.05 gLight source: 300 W xenon lamp with the light filter of UVREF (200-400 nm) and UVIRCUT420 (420-780 nm) | The incorporation of PTA into ZnS structure was proved by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared (FT-IR) and transmission electron microscopy - energy disperse spectroscopy (TEM-EDS) analyses. ZnS/PTA nanocomposites showed a narrower band gap, and considerable improvement in visible light absorption compared to that of pure ZnS. ZnS/PTA nanocomposite displayed higher photocatalytic performance with RhB degradation efficiency of 78.59% within 120 min illumination under simulated sunlight. | [ |
3 | Mg- and Zn-doped PbS | MB concentration = 10-5 mol/LMg- and Zn-doped PbS amount = 0.05 g/LLight source: UVC lamps (15 W, 240-260 nm wavelength) | Doping improves visible light absorption, and as a result, decreases the bandgap energy of PbS. The catalytic performance was considerably affected by inhibiting the recombination of electron/hole pairs providing further holes available on PbS surface and increasing the formation of reactive species for the decomposition of organic contaminants. | [ |
4 | ZnS QDs | pH = 11Crystalline violet (CV) concentration = 10 mg/LZnS QDs amount = 5 mg | It was concluded that the synthesis time could be remarkably decreased. Experimental findings revealed that ZnS QDs could be reused for at least five successive cycles, with no considerable decline in photocatalytic activity. The kinetics and possible mechanism of CV degradation were studied. The high regression coefficient values (>0.98) for the pseudo-first-order kinetic model were achieved to express the degradation of CV by using ZnS QD photocatalyst. The apparent rate constant (kapp) was calculated to be 2.63 × 10-2-3.61 × 10-2 min-1 depending on operational conditions. | [ |
5 | Tb-doped CdSe | RB5 concentration = 20 mg/LTb-doped CdSe dosage = 1 g/L | The addition of benzoquinone and ammonium oxalate resulted in considerably decreased degradation of RB5. Photogenerated superoxide radicals and holes were found to be the major reactive species. The experimental parameters were investigated and optimized by using a five-level Central Composite Design (CCD) model. Based on the results obtained from ANOVA analysis, higher regression coefficient values proved the accuracy of the studied model to estimate the decolorization efficiency of RB5 during sonophotocatalysis. | [ |
Fig. 7. Schematic representation for the growth mechanism of the formation of Ag-loaded α-Fe2O3/TiO2 nanocomposite with corresponding FESEM images [87].
No. | Type of catalyst | Experimental conditions | Findings | Refs. |
---|---|---|---|---|
1 | PbSe-graphene-TiO2 | Dye concentration = 3 × 10-5 mol/LPbSe-graphene-TiO2 amount = 1 g/LUltrasonic power = 750 WUltrasonic frequency = 20 kHz | PbSe-graphene-TiO2 showed an improved light absorption and had a red shift in absorption edge compared to both TiO2 and PbSe-TiO2 catalysts. The generation of reactive species and improved decomposition of industrial dyes in aqueous solution proved that the nanocomposite sonicated for 3 h was a much more efficient sonocatalyst compared to pure TiO2. The enhanced sonocatalytic activity could be ascribed to the synergetic effects of red shift in absorption edge and high charge mobility of PbSe-graphene-TiO2. | [ |
2 | Au/Fe3O4 | MO concentration = 20 mg/LAu/Fe3O4 amount = 0.075 g/LUltrasonic power = 160 WUltrasonic frequency = 42 kHz | Four kinetic models (pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion models) were used to study the kinetics of the MO degradation by using Au/Fe3O4 sonocatalyst. The best-fitting of the regression coefficient value of the pseudo-second-order model revealed that it was the best model to express the rate of MO sonodegradation. | [ |
3 | LZF-rGO | MO concentration = 20 mg/LLZF-rGO dosage = 0.075 g/LUltrasonic power intensity = 0.71 W/cm2Ultrasonic frequency = 40 kHz | MO can be partially adsorbed on LZF-rGO but mostly degraded by reactive species formed under ultrasonication. Reusability tests demonstrated an inconsiderable decrease (less than 10%) in the degradation efficiency after 4 successive cycles. The sonocatalytic degradation efficiency of MO was enhanced with the increase in catalyst amount and ultrasonic power intensity as well as a decrease in MO concentration. Inorganic anions including SO42-, HCO3- and Cl- acted as radical hydroxyl scavengers reducing the degradation efficiency. | [ |
4 | Pr-doped ZnO | AR17 concentration = 10 mg/LAmount of dopant = 5%Pr-doped ZnO dosage = 1 g/LUltrasonic power = 400 WUltrasonic frequency = 50-60 kHz | AR17 sonocatalytic decolorization efficiency was higher than sonolysis alone. The decolorization efficiencies of sonolysis, sonocatalysis with pure ZnO and 5% Pr-doped ZnO were found to be 24%, 46% and 100% after 70 min reaction time, respectively. The decolorization of AR17 improved with enhancing the dopant amount and sonocatalyst dosage as well as decreasing AR17 concentration. The natural pH of the solution favored the sonodegradation of AR17. In the presence of SO42-, CO32- and Cl- as radical scavengers, the decolorization efficiency decreased from 100% to 89%, 71% and 65%, respectively, revealing that the mechanism of AR17 sonodegradation was controlled by free radicals | [ |
5 | Tb-doped CdS | MB concentration = 2.5 mg/LAmount of dopant = 8%Tb-doped CdS = 1 g/L | Undoped and Tb-doped CdS were synthesized by a simple sonochemical method and utilized for ultrasound-assisted MB degradation. Tb ions incorporation into the cadmium sulfide lattice was proved by XPS analysis. When doping Tb3+ ions into CdS structure, the morphology of the sonocatalyst exhibited no obvious change. The findings of this study demonstrated that MB degradation efficiency in the presence of Tb-doped CdS was higher than that of pristine CdS. The highest degradation efficiency was achieved by using 8% of dopant. A considerable decrease in the degradation efficiency was observed by adding various radical scavengers, such as 1,4 benzoquinone, sulfate, iodide, and carbonate. | [ |
Table 2. The sonocatalytic activity of selected nanomaterials synthesized by using sonochemical approaches.
No. | Type of catalyst | Experimental conditions | Findings | Refs. |
---|---|---|---|---|
1 | PbSe-graphene-TiO2 | Dye concentration = 3 × 10-5 mol/LPbSe-graphene-TiO2 amount = 1 g/LUltrasonic power = 750 WUltrasonic frequency = 20 kHz | PbSe-graphene-TiO2 showed an improved light absorption and had a red shift in absorption edge compared to both TiO2 and PbSe-TiO2 catalysts. The generation of reactive species and improved decomposition of industrial dyes in aqueous solution proved that the nanocomposite sonicated for 3 h was a much more efficient sonocatalyst compared to pure TiO2. The enhanced sonocatalytic activity could be ascribed to the synergetic effects of red shift in absorption edge and high charge mobility of PbSe-graphene-TiO2. | [ |
2 | Au/Fe3O4 | MO concentration = 20 mg/LAu/Fe3O4 amount = 0.075 g/LUltrasonic power = 160 WUltrasonic frequency = 42 kHz | Four kinetic models (pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion models) were used to study the kinetics of the MO degradation by using Au/Fe3O4 sonocatalyst. The best-fitting of the regression coefficient value of the pseudo-second-order model revealed that it was the best model to express the rate of MO sonodegradation. | [ |
3 | LZF-rGO | MO concentration = 20 mg/LLZF-rGO dosage = 0.075 g/LUltrasonic power intensity = 0.71 W/cm2Ultrasonic frequency = 40 kHz | MO can be partially adsorbed on LZF-rGO but mostly degraded by reactive species formed under ultrasonication. Reusability tests demonstrated an inconsiderable decrease (less than 10%) in the degradation efficiency after 4 successive cycles. The sonocatalytic degradation efficiency of MO was enhanced with the increase in catalyst amount and ultrasonic power intensity as well as a decrease in MO concentration. Inorganic anions including SO42-, HCO3- and Cl- acted as radical hydroxyl scavengers reducing the degradation efficiency. | [ |
4 | Pr-doped ZnO | AR17 concentration = 10 mg/LAmount of dopant = 5%Pr-doped ZnO dosage = 1 g/LUltrasonic power = 400 WUltrasonic frequency = 50-60 kHz | AR17 sonocatalytic decolorization efficiency was higher than sonolysis alone. The decolorization efficiencies of sonolysis, sonocatalysis with pure ZnO and 5% Pr-doped ZnO were found to be 24%, 46% and 100% after 70 min reaction time, respectively. The decolorization of AR17 improved with enhancing the dopant amount and sonocatalyst dosage as well as decreasing AR17 concentration. The natural pH of the solution favored the sonodegradation of AR17. In the presence of SO42-, CO32- and Cl- as radical scavengers, the decolorization efficiency decreased from 100% to 89%, 71% and 65%, respectively, revealing that the mechanism of AR17 sonodegradation was controlled by free radicals | [ |
5 | Tb-doped CdS | MB concentration = 2.5 mg/LAmount of dopant = 8%Tb-doped CdS = 1 g/L | Undoped and Tb-doped CdS were synthesized by a simple sonochemical method and utilized for ultrasound-assisted MB degradation. Tb ions incorporation into the cadmium sulfide lattice was proved by XPS analysis. When doping Tb3+ ions into CdS structure, the morphology of the sonocatalyst exhibited no obvious change. The findings of this study demonstrated that MB degradation efficiency in the presence of Tb-doped CdS was higher than that of pristine CdS. The highest degradation efficiency was achieved by using 8% of dopant. A considerable decrease in the degradation efficiency was observed by adding various radical scavengers, such as 1,4 benzoquinone, sulfate, iodide, and carbonate. | [ |
[1] | K.L. Khatri, A.R. Muhammad, S.A. Soomro, N.A. Tunio, M.M. Ali, Renew. Sus- tain. Energy Rev. 143 (2021) 110882. |
[2] |
T. Wang, Z. Wang, L. Guo, J. Zhang, W. Li, H. He, R. Zong, D. Wang, Z. Jia, Y. Wen, Agric. Syst. 193 (2021) 103220.
DOI URL |
[3] |
F. Lu, D. Astruc, Coord. Chem. Rev. 408 (2020) 213180.
DOI URL |
[4] |
M. Sun, Y. Yang, M. Huang, S. Fu, Y. Hao, S. Hu, D. Lai, L. Zhao, Sci. Total Environ. 807 (2022) 151042.
DOI URL |
[5] |
J. Bai, W. Chen, R. Shen, Z. Jiang, P. Zhang, W. Liu, X. Li, J. Mater. Sci. Technol. 112 (2022) 85-95.
DOI URL |
[6] |
W. Lei, T. Zhou, X. Pang, S. Xue, Q. Xu, J. Mater. Sci. Technol. 114 (2022) 143-164.
DOI URL |
[7] |
W. Zhang, X. Zhou, J. Huang, S. Zhang, X. Xu, J. Mater. Sci. Technol. 115 (2022) 199-207.
DOI URL |
[8] |
C. Peng, W. Fan, Q. Li, W. Han, X. Chen, G. Zhang, Y. Yan, Q. Gu, C. Wang, H. Zhang, P. Zhang, J. Mater. Sci. Technol. 115 (2022) 208-220.
DOI URL |
[9] |
A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, Appl. Catal. B Environ. 289 (2021) 120039.
DOI URL |
[10] |
B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A.A. Al-Ghamdi, S. Wageh, Appl. Catal. B Environ. 288 (2021) 119994.
DOI URL |
[11] |
K. Qi, W. Lv, I. Khan, S.Y. Liu, Chin. J. Catal. 41 (2020) 114-121.
DOI URL |
[12] |
W. Li, C. Zhuang, Y. Li, C. Gao, W. Jiang, Z. Sun, K. Qi, Ceram. Int. 47 (2021) 21769-21776.
DOI URL |
[13] |
H. Deng, X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, L. Zhang, Chem. Eng. J. 409 (2021) 127377.
DOI URL |
[14] |
H. Zhang, Y. Li, W. Li, C. Zhuang, C. Gao, W. Jiang, W. Sun, K. Qi, Z. Sun, X. Han, Int. J. Hydrog. Energy 46 (2021) 28545-28553.
DOI URL |
[15] |
C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Adv. Mater. 33 (2021) 2003521.
DOI URL |
[16] |
Y. Yang, H. Tan, B. Cheng, J. Fan, J. Yu, W. Ho, Small Methods 5 (2021) 2001042.
DOI URL |
[17] |
Y. Zhang, Y. Li, H. Yu, K. Yu, H. Yu, J. Mater. Sci. Technol. 106 (2022) 139-146.
DOI URL |
[18] |
J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Chin. J. Catal. 42 (2021) 56-68.
DOI URL |
[19] |
L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 411 (2021) 128501.
DOI URL |
[20] |
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447.
DOI URL |
[21] |
N. Baig, I. Kammakakam, W. Falath, Mater. Adv. 2 (2021) 1821-1871.
DOI URL |
[22] |
K. Qi, N. Cui, M. Zhang, Y. Ma, G. Wang, Z. Zhao, A. Khataee, Chemosphere 272 (2021) 129953.
DOI URL |
[23] |
K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.Y. Liu, H. Lin, G. Wang, Ceram. Int. 46 (2020) 1494-1502.
DOI URL |
[24] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[25] | D. Schieppati, F. Galli, M.L. Peyot, V. Yargeau, C.L. Bianchi, D.C. Boffito, Ultra- son. Sonochem. 54 (2019) 302-310. |
[26] |
D. Gao, X. Wu, P. Wang, H. Yu, B. Zhu, J. Fan, J. Yu, Chem. Eng. J. 408 (2021) 127230.
DOI URL |
[27] |
R. Kumar, P. Raizada, A.A.P. Khan, V.H. Nguyen, Q. Van Le, S. Ghotekar, R. Sel- vasembian, V. Gandhi, A. Singh, P. Singh, J. Mater. Sci. Technol. 108 (2022) 208-225.
DOI URL |
[28] |
J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, H.Y. Chen, Adv. Mater. 15 (2003) 156-159.
DOI URL |
[29] |
M. Kaempgen, M. Lebert, M. Haluska, N. Nicoloso, S. Roth, Adv. Mater. 20 (2008) 616-620.
DOI URL |
[30] |
M. Kamali, R. Dewil, L. Appels, T.M. Aminabhavi, Chemosphere 276 (2021) 130146.
DOI URL |
[31] |
H. Xu, B.W. Zeiger, K.S. Suslick, Chem. Soc. Rev. 42 (2013) 2555-2567.
DOI URL |
[32] |
R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12 (2000) 2301-2305.
DOI URL |
[33] |
Z. Li, J. Dong, L. Wang, Y. Zhang, T. Zhuang, H. Wang, X. Cui, Z. Wang, Nanoscale Adv. 3 (2021) 2423-2447.
DOI URL |
[34] |
S. Pilli, P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R.Y. Surampalli, Ultrason. Sonochem. 18 (2011) 1-18.
DOI URL |
[35] |
M. Pirsaheb, N. Moradi, RSC Adv. 10 (2020) 7396-7423.
DOI PMID |
[36] |
Maritza Gutiérrez A. Henglein J. Phys. Chem. 91 (1987) 6687-6690.
DOI URL |
[37] | Y. Nagata, Y. Watananabe, S.I. Fujita, T. Dohrnaru, S. Taniguchi,J. Chem. Soc. Chem. Commun. (1992) 1620-1622. |
[38] | R. Ebrahimi, G. Rezanejade Bardajee, J. Polym. Res. 28 (2021). |
[39] |
R. Monsef, F. Soofivand, H. Abbas Alshamsi, A. Al-Nayili, M. Ghiyasiyan-Arani, M. Salavati-Niasari, J. Mol. Liq. 336 (2021) 116339.
DOI URL |
[40] |
C. Wattanawikkam, W. Pecharapa, Radiat. Phys. Chem. 171 (2020) 108714.
DOI URL |
[41] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
DOI URL |
[42] |
Y. Liang, G. Huang, X. Xin, Y. Yao, Y. Li, J. Yin, X. Li, Y. Wu, S. Gao, J. Mater. Sci. Technol. 112 (2022) 239-262.
DOI |
[43] |
G. Huang, W. Ye, C. Lv, D.S. Butenko, C. Yang, G. Zhang, P. Lu, Y. Xu, S. Zhang, H. Wang, Y. Zhu, D. Yang, J. Mater. Sci. Technol. 108 (2022) 18-25.
DOI URL |
[44] |
L. Wang, X. Fei, L. Zhang, J. Yu, B. Cheng, Y. Ma, J. Mater. Sci. Technol. 112 (2022) 1-10.
DOI URL |
[45] |
L. Yang, Y. Wang, R. Liu, H. Liu, X. Zhang, C. Zeng, C. Fu, J. Mater. Sci. Technol. 37 (2020) 173-180.
DOI URL |
[46] |
P. Junlabhut, C. Wattanawikkam, W. Mekprasart, W. Pecharapa, J. Nanosci. Nanotechnol. 18 (2018) 7302-7309.
DOI URL |
[47] |
S. Sunkara, N. Munichandraiah, K.B.R. Varma, S.A. Shivashankar, New J. Chem. 40 (2016) 7197-7203.
DOI URL |
[48] |
Y.Q. Wang, S.G. Chen, X.H. Tang, O. Palchik, A. Zaban, Y. Koltypin, A. Gedanken, J. Mater. Chem. 11 (2001) 521-526.
DOI URL |
[49] |
X.D. Qiao, Y. Li, Y.Y. Liu, G.L. Huang, B.X. Lei, W. Sun, Z.F. Sun, Adv. Powder Technol. 27 (2016) 1806-1813.
DOI URL |
[50] |
S. Anandan, T. Sivasankar, T. Lana-Villarreal, Ultrason. Sonochem. 21 (2014) 1964-1968.
DOI URL |
[51] |
T.W. Chen, S. Chinnapaiyan, S.M. Chen, A. Hossam Mahmoud, M.S. Elshikh, H. Ebaid, M. Taha Yassin, Ultrason. Sonochem. 62 (2020) 104872.
DOI URL |
[52] |
H.M. Xiong, D.G. Shchukin, H. Möhwald, Y. Xu, Y.Y. Xia, Angew. Chem. Int. Ed. 48 (2009) 2727-2731.
DOI URL |
[53] |
Y.F. Wang, X. Wang, X.F. Li, D.J. Li, RSC Adv. 5 (2015) 81253-81259.
DOI URL |
[54] |
S.S. Warule, N.S. Chaudhari, B.B. Kale, M.A. More, CrystEngComm 11 (2009) 2776.
DOI URL |
[55] |
P. Anukorn, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. A 92 (2018) 2081-2085.
DOI URL |
[56] |
S. Shenoy, S. Ahmed, I.M.C. Lo, S. Singh, K. Sridharan, Mater. Res. Bull. 140 (2021) 111290.
DOI URL |
[57] |
J.C. Chappell, J. Song, C.W. Burke, A.L. Klibanov, R.J. Price, Small 4 (2008) 1769-1777.
DOI PMID |
[58] | M. Lupacchini, A. Mascitti, G. Giachi, L. Tonucci, N. d’Alessandro, J. Martinez, E. Colacino, Tetrahedron 73 (2017) 609-653. |
[59] |
A. Roy, S. Maitra, S. Ghosh, S. Chakrabarti, Mater. Res. Bull. 74 (2016) 414-420.
DOI URL |
[60] |
A.E. Kandjani, M.F. Tabriz, B. Pourabbas, Mater. Res. Bull. 43 (2008) 645-654.
DOI URL |
[61] |
A. Roy, S. Maitra, S. Chakrabarti, Int. J. Nanopart. 10 (2018) 178-195.
DOI URL |
[62] |
A. Phuruangrat, O. Yayapao, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. A 90 (2016) 949-954.
DOI URL |
[63] |
M. Mousavi-Kamazani, F. Azizi, Ultrason. Sonochem. 58 (2019) 104695.
DOI URL |
[64] |
P. Rezaei, M. Rezaei, F. Meshkani, Ultrason. Sonochem. 57 (2019) 212-222.
DOI PMID |
[65] |
D.E. Fouad, C. Zhang, T.D. Mekuria, C. Bi, A. A. Zaidi, A. H. Shah, Ultrason. Sonochem. 59 (2019) 104713.
DOI URL |
[66] |
N. Shin, K. Saravanakumar, M.H. Wang, J. Clust. Sci. 30 (2019) 669-675.
DOI URL |
[67] |
N. Pugazhenthiran, K. Kaviyarasan, T. Sivasankar, A. Emeline, D. Bahnemann, R. V. Mangalaraja, S. Anandan, Ultrason. Sonochem. 35 (2017) 342-350.
DOI PMID |
[68] |
S. Palanisamy, V. Velusamy, S. Balu, S. Velmurugan, T.C.K. Yang, S.W. Chen, Ultrason. Sonochem. 63 (2020) 104917.
DOI URL |
[69] |
W. Zhu, Solid State Sci. 118 (2021) 106406.
DOI URL |
[70] |
N.F. Andrade Neto, O.B.M. Ramalho, H. Fantucci, R.M. Santos, M.R.D. Bomio, F. V. Motta, J. Mater. Sci. Mater. Electron. 31 (2020) 14192-14202.
DOI URL |
[71] |
C. Sun, L. Karuppasamy, L. Gurusamy, H.J. Yang, C.H. Liu, J. Dong, J.J. Wu, Sep. Purif. Technol. 271 (2021) 118873.
DOI URL |
[72] |
L. Heshmatynezhad, F. Jamali-Sheini, A. Monshi, Ceram. Int. 45 (2019) 13923-13933.
DOI |
[73] |
R. Kastilani, B.P. Bishop, V.C. Holmberg, L.D. Pozzo, Langmuir 35 (2019) 16583-16592.
DOI PMID |
[74] |
L. Zhu, J.D. Chung, W.C. Oh, Ultrason. Sonochem. 27 (2015) 252-261.
DOI URL |
[75] |
S.A. Alkahtani, A.M. Mahmoud, M.H. Mahnashi. A. O. AlQarni, Y.S.A. Alqahtani, M. M. El-Wekil, Microchem. J. 164 (2021) 105972.
DOI URL |
[76] |
F. Karimi, H.R. Rajabi, L. Kavoshi, Ultrason. Sonochem. 57 (2019) 139-146.
DOI URL |
[77] |
Y. Hanifehpour, N. Nozad Ashan, A. Amani-Ghadim, S. Joo, Nanomaterials 11 (2021) 378.
DOI URL |
[78] |
K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 38 (2017) 1936-1955.
DOI URL |
[79] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[80] |
J. Low, J. Yu, M. Jaroniec, S. Wageh. A. A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694.
DOI URL |
[81] |
S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara, Adv. Funct. Mater. 15 (2005) 381-386.
DOI URL |
[82] |
A.I. Navarro-Aguilar, S. Obregón, D. Sanchez-Martinez, D.B. Hernández-Uresti, J. Photochem. Photobiol. A 384 (2019) 112010.
DOI URL |
[83] |
W. Wang, G. Li, T. An, D.K.L. Chan, J.C. Yu, P.K. Wong, Appl. Catal. B Environ. 238 (2018) 126-135.
DOI URL |
[84] |
T.P. Shende, B.A. Bhanvase, A.P. Rathod, D.V. Pinjari, S.H. Sonawane, Ultrason. Sonochem. 41 (2018) 582-589.
DOI PMID |
[85] |
W. Zhang, Y. Yang, E. Ziemann, A. Be’er, M.Y. Bashouti, M. Elimelech, R. Bern-stein, Environ. Sci. Nano 6 (2019) 3080-3090.
DOI URL |
[86] | L.E. Low, B.T. Tey, B.H. Ong, S.Y. Tang, Asia Pac. J. Chem. Eng 13 (2018) e2209. |
[87] |
I. Khan, A. Qurashi, ACS Sustain. Chem. Eng. 6 (2018) 11235-11245.
DOI URL |
[88] |
K.S. Suslick, D.J. Casadonte, J. Am. Chem. Soc. 109 (1987) 3459-3461.
DOI URL |
[89] |
A. Zanias, Z. Frontistis, J. Vakros, O.S. Arvaniti, R.S. Ribeiro, A.M.T. Silva, J. L. Faria, H.T. Gomes, D. Mantzavinos, Ultrason. Sonochem. 64 (2020) 105045.
DOI URL |
[90] |
Y.G. Adewuyi, Ind. Eng. Chem. Res. 40 (2001) 4681-4715.
DOI URL |
[91] |
P. Gholami, A. Khataee, R.D.C. Soltani, A. Bhatnagar, Ultrason. Sonochem. 58 (2019) 104681.
DOI URL |
[92] |
J.M. Wu, H.S. Huang, C.D. Livengood, Environ. Prog. 11 (1992) 195-201.
DOI URL |
[93] |
J. Theerthagiri, J. Madhavan, S.J. Lee, M.Y. Choi, M. Ashokkumar, B.G. Pollet, Ultrason. Sonochem. 63 (2020) 104960.
DOI URL |
[94] |
P. Qiu, B. Thokchom, J. Choi, M. Cui, H.D. Kim, Z. Han, D. Kim, J. Khim, RSC Adv. 6 (2016) 37434-37442.
DOI URL |
[95] |
Á.d.J. Ruíz-Baltazar, Ultrason. Sonochem. 73 (2021) 105521.
DOI URL |
[96] |
J. Han, B.M. Jun, J. Heo, S. Kim, Y. Yoon, C.M. Park, Ecotoxicol. Environ. Saf. 182 (2019) 109396.
DOI URL |
[97] |
A. Khataee, A. Karimi, S. Arefi-Oskoui, R. Darvishi Cheshmeh Soltani, Y. Hani- fehpour, B. Soltani, S.W. Joo, Ultrason. Sonochem. 22 (2015) 371-381.
DOI URL |
[98] |
Y. Hanifehpour, N. Hamnabard, B. Mirtamizdoust, S.W. Joo, J. Inorg. Organomet. Polym Mater. 26 (2016) 623-631.
DOI URL |
[99] |
P. Sathishkumar, R.V. Mangalaraja, S. Anandan, Renew. Sustain. Energy Rev. 55 (2016) 426-454.
DOI URL |
[100] |
T. Sivasankar, V.S. Moholkar, Ultrason. Sonochem. 16 (2009) 769-781.
DOI URL |
[101] |
S. Anandan, V. Kumar Ponnusamy, M. Ashokkumar, Ultrason. Sonochem. 67 (2020) 105130.
DOI URL |
[102] |
H. Ferkous, S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Ultrason. Sonochem. 26 (2015) 30-39.
DOI PMID |
[103] |
J. González-García, V. Sáez, I. Tudela, M.I. Díez-Garcia, M. Deseada Esclapez, O. Louisnard, Water 2 (2010) 28-74.
DOI URL |
[104] |
S. Saravanan, T. Sivasankar, Environ. Prog. Sustain. Energy 35 (2016) 669-679.
DOI URL |
[105] |
S. Merouani, H. Ferkous, O. Hamdaoui, Y. Rezgui, M. Guemini, Ultrason. Sonochem. 22 (2015) 51-58.
DOI PMID |
[106] |
M. Zarrabi, M. Haghighi, R. Alizadeh, Ultrason. Sonochem. 48 (2018) 370-382.
DOI PMID |
[107] |
N.A. Hammed, A.A. Aziz, A.I. Usman, M.A. Qaeed, Ultrason. Sonochem. 50 (2019) 172-181.
DOI PMID |
[108] |
Z. Wei, R. Spinney, R. Ke, Z. Yang, R. Xiao, Environ. Chem. Lett. 14 (2016) 163-182.
DOI URL |
[109] |
S. Wang, J. Wang, Chem. Eng. J. 351 (2018) 688-696.
DOI URL |
[110] |
M. Chiha, O. Hamdaoui, S. Baup, N. Gondrexon, Ultrason. Sonochem. 18 (2011) 943-950.
DOI URL |
[111] |
S.D. Ayare, P.R. Gogate, Ultrason. Sonochem. 51 (2019) 69-76.
DOI URL |
[112] |
A. Khataee, S. Saadi, B. Vahid, S.W. Joo, J. Ind. Eng. Chem. 35 (2016) 167-176.
DOI URL |
[113] |
J. Bałdyga, Ł. Makowski, Ind. Eng. Chem. Res. 44 (2005) 5342-5352.
DOI URL |
[114] |
D.V. Pinjari, K. Prasad, P.R. Gogate, S.T. Mhaske, A.B. Pandit, Ultrason. Sonochem. 23 (2015) 185-191.
DOI PMID |
[1] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[2] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[3] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[4] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[5] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[6] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[7] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[8] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[9] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[10] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[11] | Nan Li, Qiuhui Zhu, Guimei Liu, Qi Zhao, Haiqin Lv, Mingzhe Yuan, Qingguo Meng, Yingtang Zhou, Jingkun Xu, Chuanyi Wang. Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure [J]. J. Mater. Sci. Technol., 2022, 122(0): 91-100. |
[12] | Yuxiao Chen, Wei Zhong, Feng Chen, Ping Wang, Jiajie Fan, Huogen Yu. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance [J]. J. Mater. Sci. Technol., 2022, 121(0): 19-27. |
[13] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[14] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[15] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||