J. Mater. Sci. Technol. ›› 2022, Vol. 123: 123-135.DOI: 10.1016/j.jmst.2021.11.083
• Research Article • Previous Articles Next Articles
Peng Chena,b, Xiyu Yaoa, Moataz M.Attallahb,*(), Ming Yana,*(
)
Received:
2021-10-07
Revised:
2021-11-12
Accepted:
2021-11-14
Published:
2022-10-01
Online:
2022-09-30
Contact:
Moataz M.Attallah,Ming Yan
About author:
yanm@sustech.edu.cn (M. Yan).Peng Chen, Xiyu Yao, Moataz M.Attallah, Ming Yan. In-situ alloyed CoCrFeMnNi high entropy alloy: Microstructural development in laser powder bed fusion[J]. J. Mater. Sci. Technol., 2022, 123: 123-135.
Fig. 2. SEM images of (a) pre-alloyed CoCrFeNi powder, (b) elemental Mn powder, and (c) the blended powder. (d) An illustration of the scanning in-situ strategy for pre-alloyed beds and in-situ alloyed samples, and (e) a 316L substrate holding six pre-alloyed beds with as-built samples.
Sample | Co | Cr | Fe | Ni | Mn |
---|---|---|---|---|---|
Blended powder (at.%) | 18.8 | 20.1 | 20.4 | 19.3 | 21.4 |
Table 1. Composition of the blended powder used in this study.
Sample | Co | Cr | Fe | Ni | Mn |
---|---|---|---|---|---|
Blended powder (at.%) | 18.8 | 20.1 | 20.4 | 19.3 | 21.4 |
Sample | Power, P (W) | Scanning speed, v (mm/s) | Hatch spacing, h (μm) |
---|---|---|---|
Pre-alloyed beds | 220 | 600 | 60 |
Single-track | 150, 200, 250, 300 | 600, 700, 800, 900, 1000 | / |
Single-layer | 150, 300 | 600, 1000 | 60, 70, 80, 90, 100 |
Three-layer | 150, 200, 250, 300 | 600, 700, 800, 900, 1000 | 60, 100 |
Table 2. Processing parameters used in the track-based experiments.
Sample | Power, P (W) | Scanning speed, v (mm/s) | Hatch spacing, h (μm) |
---|---|---|---|
Pre-alloyed beds | 220 | 600 | 60 |
Single-track | 150, 200, 250, 300 | 600, 700, 800, 900, 1000 | / |
Single-layer | 150, 300 | 600, 1000 | 60, 70, 80, 90, 100 |
Three-layer | 150, 200, 250, 300 | 600, 700, 800, 900, 1000 | 60, 100 |
ρ (g/cm3) | C (J/(kg·K)) | K (W/(m·K)) | Tm (K) | Tb (K) | A |
---|---|---|---|---|---|
8.16 | 444 [ | 21 [ | 1687 [ | 3070* | 0.3, 0.6 [ |
Table 3. Physical properties of CoCrFeNi HEA.
ρ (g/cm3) | C (J/(kg·K)) | K (W/(m·K)) | Tm (K) | Tb (K) | A |
---|---|---|---|---|---|
8.16 | 444 [ | 21 [ | 1687 [ | 3070* | 0.3, 0.6 [ |
Fig. 4. Measured depths of (a) pre-alloyed CoCrFeNi meltpools and (b) in-situ alloyed CoCrFeMnNi meltpools. (c) Dependence of measured and predicted depths, as well as width-to-depth ratio on linear energy density. Measured widths of (d) pre-alloyed meltpools and (e) in-situ alloyed meltpools. (f) Dependence of measured and predicted widths on linear energy density.
Fig. 5. The comparison of aspect ratio (R) between measured results of pre-alloyed meltpools and predicted results calculated by the keyhole-based method [36].
Fig. 10. Schematics of (a) conduction meltpools and (b) keyhole meltpools. (c) SEM top view at the end of a single-track sample scanned by 300 W & 600 mm/s. (d) Schematic of a solidified in-situ alloyed meltpool.
Fig. 11. (a) IPF mapping & OM results of in-situ alloyed meltpools scanned by 300 W & 600 mm/s, and (b) EDS mapping results of the area marked by the black dashed line. White dashed lines and dotted lines mark the meltpool boundary and internal delimitation, respectively.
Fig. 12. EDS line scanning results of Mn in single layers fabricated with hatch spacing of (a) 100 μm, and (b) 60 μm. The scanning lines are drawn 30 μm beneath the surfaces of layers. The arrows in figures mark the scanning consequences of tracks in layers.
Fig. 13. (a) IPF mapping of the single-layer sample fabricated with 150 W & 600 mm/s and hatch spacing of 60 μm. (b) Schematic illustrating horizontal grain growth (yellow arrows) with different hatch spacings. Schematic illustrating the grain growth of <001> orientation (notes as [001]) in meltpools with (c) high P & v and (d) low P & v, plotted according to in-situ and ex-situ studies of LPBFed meltpools [37,50,55,60].
[1] |
Y. Brif, M. Thomas, I. Todd, Scr. Mater. 99 (2015) 93-96.
DOI URL |
[2] |
X. Li, Adv. Eng. Mater. 20 (2017) 1700874.
DOI URL |
[3] |
J. Kim, A. Wakai, A. Moridi, J. Mater. Res. 35 (2020) 1963-1983.
DOI URL |
[4] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
[5] | C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Adv Mater. (2020) e1903855. |
[6] | D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, F. Minami, Addit. Manuf. 32 (2020) 101058. |
[7] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloy. Compd. 746 (2018) 125-134.
DOI URL |
[8] |
A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, M.S. Pham, Mater. Lett. 224 (2018) 22-25.
DOI URL |
[9] |
J. Ren, C. Mahajan, L. Liu, D. Follette, W. Chen, S. Mukherjee, Metals 9 (2019) 1029.
DOI URL |
[10] | J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.H. Yu, H.S. Kim, Mater. Res. Lett. (2019) 1-7. |
[11] |
B. Li, B. Qian, Y. Xu, Z. Liu, F. Xuan, Mater. Lett. 252 (2019) 88-91.
DOI URL |
[12] |
D.E. Jodi, J. Park, N. Park, Mater. Lett. 258 (2020) 126772.
DOI URL |
[13] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[14] |
Y. Dong, Y. Li, T. Ebel, M. Yan, J. Mater. Res. 35 (2020) 1922-1935.
DOI URL |
[15] |
M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloy. Compd. 872 (2021) 159567.
DOI URL |
[16] |
S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Prog. Mater. Sci. 119 (2021) 100795.
DOI URL |
[17] |
M. Cagirici, P. Wang, F.L. Ng, M.L.S. Nai, J. Ding, J. Wei, J. Mater. Sci. Technol. 94 (2021) 53-66.
DOI |
[18] |
Z.H. Zhang, Y.H. Zhou, S.Y. Zhou, L. Zhang, M. Yan, Metall. Mater. Trans. A 50 (2019) 3922-3936.
DOI URL |
[19] |
B. Zhang, N.E. Fenineche, H. Liao, C. Coddet, J. Mater. Sci. Technol. 29 (2013) 757-760.
DOI URL |
[20] |
R. Duan, S. Li, B. Cai, Z. Tao, W. Zhu, F. Ren, M.M. Attallah, Compos. B Eng. 222 (2021) 109059.
DOI URL |
[21] |
I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, J. Alloy. Compd. 763 (2018) 436-445.
DOI URL |
[22] | V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Heliyon. 5 (2019) e01188. |
[23] | S. Ewald, F. Kies, S. Hermsen, M. Voshage, C. Haase, J.H. Schleifenbaum, Mate- rials 12 (2019) 1706 (Basel). |
[24] |
P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci. Technol. 43 (2020) 40-43.
DOI |
[25] | S. Luo, C. Zhao, H. Yang, Q. Liu, Z. Wang, X. Zeng, Addit. Manuf. (2019) 100925. |
[26] | D. Lin, L. Xu, X. Li, H. Jing, G. Qin, H. Pang, F. Minami, Addit. Manuf. 35 (2020) 101340. |
[27] |
K. Sun, W. Peng, L. Yang, L. Fang, Metals 10 (2020) 292.
DOI URL |
[28] |
Y. Hou, H. Su, H. Zhang, X. Wang, C. Wang, Metals 11 (2021) 942.
DOI URL |
[29] | F. Huber, D. Bartels, M. Schmidt, Materials 14 (2021) 3095 (Basel). |
[30] |
Y. Kuzminova, A. Shibalova, S. Evlashin, I. Shishkovsky, P. Krakhmalev, Mater. Lett. 303 (2021) 130487.
DOI URL |
[31] |
J. Gao, Y. Jin, Y. Fan, D. Xu, L. Meng, C. Wang, Y. Yu, D. Zhang, F. Wang, J. Mater. Sci. Technol. 102 (2022) 159-165.
DOI URL |
[32] |
C. Guo, Z. Xu, Y. Zhou, S. Shi, G. Li, H. Lu, Q. Zhu, R.M. Ward, J. Mater. Process. Technol. 290 (2021) 117000.
DOI URL |
[33] |
L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, R. Arróyave, Acta Mater. 176 (2019) 199-210.
DOI |
[34] |
H. Li, Y. Huang, J. Sun, Y. Lu, J. Mater. Sci. Technol. 77 (2021) 187-195.
DOI URL |
[35] |
N.M. Everitt, Adv. Mater. Lett. 7 (2016) 13-16.
DOI URL |
[36] | R. Fabbro, M. Dal, P. Peyre, F. Coste, M. Schneider, V. Gunenthiram, J. Laser Appl. 30 (3) (2018) 5040624. |
[37] |
A.M. Rubenchik, W.E. King, S.S. Wu, J. Mater. Process. Technol. 257 (2018) 234-243.
DOI URL |
[38] | M. Tang, P.C. Pistorius, J.L. Beuth, Addit. Manuf. 14 (2017) 39-48. |
[39] | D. Rosenthal, Weld. J. 20 (1941) 220-234. |
[40] | T.W. Eagar, N.S. Tsai, Weld. J. 62 (1983) S346-S355. |
[41] | D.B. Hann, J. Iammi, J. Folkes, S. Hinduja, L. Li, in: Proceedings of the 36th International MATADOR Conference, London, Springer London 2010, pp. 275-278. |
[42] |
R. Fabbro, J. Phys. D Appl. Phys. 43 (2010) 445501.
DOI URL |
[43] |
J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, M. J. Matthews, Adv. Eng. Mater. 21 (2019) 1900185.
DOI URL |
[44] |
P. Promoppatum, S.C. Yao, P.C. Pistorius, A.D. Rollett, Engineering 3 (2017) 685-694.
DOI URL |
[45] | L.R. Goossens, B. Van Hooreweder, Addit. Manuf. 40 (2021) 101923. |
[46] | M. Döring, G. Boussinot, J.F. Hagen, M. Apel, S. Kohl, M. Schmidt, Proc. CIRP. 94 (2020) 58-63. |
[47] |
H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B 163 (2009) 184-189.
DOI URL |
[48] | J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, Appl. Mater. Today 9 (2017) 341-349. |
[49] |
H. Yao, J.W. Qiao, M. Gao, J. Hawk, S.G. Ma, H. Zhou, Entropy 18 (2016) 189.
DOI URL |
[50] | Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Addit. Manuf. 28 (2019) 600-609. |
[51] | M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K. C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, J. Phys. Chem. Ref. Dat. 35 (20 06)285-30 0. |
[52] |
I. Korobeinikov, R. Endo, S. Seetharaman, O. Volkova, Metall. Mater. Trans. B 52 (2021) 571-575.
DOI URL |
[53] |
C. Tan, Y. Chew, G. Bi, D. Wang, W. Ma, Y. Yang, K. Zhou, J. Mater. Sci. Technol. 72 (2021) 217-222.
DOI URL |
[54] |
P. Chen, C. Yang, S. Li, M.M. Attallah, M. Yan, Mater. Des. 194 (2020) 108966.
DOI URL |
[55] |
M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, Nat. Commun. 11 (2020) 749.
DOI URL |
[56] |
N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A. D. Spear, W. Tan, Phys. Rev. Appl. 11 (2019) 064054.
DOI URL |
[57] |
S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108 (2016) 36-45.
DOI URL |
[58] |
Y. Feng, X. Gao, Y. Zhang, C. Peng, X. Gui, Y. Sun, X. Xiao, Int. J. Adv. Manuf. Tech. 112 (2021) 2301-2312.
DOI URL |
[59] |
N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J.A. Schneider, P.D. Portella, G. Bruno, Mater. Des. 134 (2017) 139-150.
DOI URL |
[60] |
C. Zhang, K. Feng, H. Kokawa, B. Han, Z. Li, Mater. Sci. Eng. A 789 (2020) 139672.
DOI URL |
[61] | B. Attard, S. Cruchley, C. Beetz, M. Megahed, Y.L. Chiu, M.M. Attallah, Addit. Manuf. 36 (2020) 101432. |
[62] |
J. Zou, Y. Gaber, G. Voulazeris, S. Li, L. Vazquez, L.F. Liu, M.Y. Yao, Y.J. Wang, M. Holynski, K. Bongs, M.M. Attallah, Acta Mater. 158 (2018) 230-238.
DOI URL |
[63] | C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Int. J. Mach. Tools Manuf. (2021) 103804. |
[64] |
Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, W.K. Liu, Nat. Commun. 12 (2021) 2379.
DOI URL |
[1] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[2] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[3] | Mirza Zahid Hussain, Jiangtao Xiong, Jinglong Li, Farah Siddique, Lin Jie Zhang, Yajie Du, Xian Rong Zhou. Effect of Ti-Hf-Zr-Cu-Ni high entropy alloy addition on laser beam welded joint of Ti2AlNb based intermetallic alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 214-226. |
[4] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[5] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[6] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[7] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
[8] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[9] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[10] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[11] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[12] | Meng Dai, P.P. Cao, H.L. Huang, S.H. Jiang, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu. Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 122(0): 243-254. |
[13] | Yuan-Yuan Tan, Zhong-Jun Chen, Ming-Yao Su, Gan Ding, Min-Qiang Jiang, Zhou-Can Xie, Yu Gong, Tao Wu, Zhong-Hua Wu, Hai-Ying Wang, Lan-Hong Dai. Lattice distortion and magnetic property of high entropy alloys at low temperatures [J]. J. Mater. Sci. Technol., 2022, 104(0): 236-243. |
[14] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[15] | Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116(0): 199-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||