J. Mater. Sci. Technol. ›› 2022, Vol. 113: 229-245.DOI: 10.1016/j.jmst.2021.11.009
• Research article • Previous Articles Next Articles
Bin Wua,b, Hongliang Minga,b,**(), Fanjiang Mengc,*(
), Yifeng Lid, Guangqing Hee,f, Jianqiu Wanga,b, En-Hou Hanb
Received:
2021-09-17
Revised:
2021-11-08
Accepted:
2021-11-13
Published:
2022-01-08
Online:
2022-06-24
Contact:
Hongliang Ming,Fanjiang Meng
About author:
* mengfanjiang@snerdi.com.cn(F. Meng).Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking[J]. J. Mater. Sci. Technol., 2022, 113: 229-245.
Ni | Cr | Fe | Si | Mn | Al | Ti | C | S | P |
---|---|---|---|---|---|---|---|---|---|
Bal. | 29.55 | 9.81 | 0.06 | 0.01 | 0.11 | 0.12 | 0.022 | <0.01 | <0.01 |
Table 1. Chemical compositions of Alloy 690TT (wt.%).
Ni | Cr | Fe | Si | Mn | Al | Ti | C | S | P |
---|---|---|---|---|---|---|---|---|---|
Bal. | 29.55 | 9.81 | 0.06 | 0.01 | 0.11 | 0.12 | 0.022 | <0.01 | <0.01 |
Scratch depth (μm) | Treatment time (s) | Empty Cell |
---|---|---|
Empty Cell | Grinding treatment A (1000 r-600 #) | Grinding treatment B (1000 r-1000 #) |
10 | 3-5 | 3-5 |
30 | 5-7 | 5-10 |
50 | 5-7 | 5-10 |
70 | 5-7 | 5-10 |
90 | 7-10 | 7-15 |
110 | 7-10 | 7-15 |
Table 2. Parameters of two grinding treatment.
Scratch depth (μm) | Treatment time (s) | Empty Cell |
---|---|---|
Empty Cell | Grinding treatment A (1000 r-600 #) | Grinding treatment B (1000 r-1000 #) |
10 | 3-5 | 3-5 |
30 | 5-7 | 5-10 |
50 | 5-7 | 5-10 |
70 | 5-7 | 5-10 |
90 | 7-10 | 7-15 |
110 | 7-10 | 7-15 |
Fig. 2. The three-dimensional morphologies of samples with different scratch depths: (a1-c1) 30, 70, 110 μm, respectively, (a2-c2) 30, 70, 110, μm treated by GT-A, respectively, (d1-e1) 50 μm before treated by GT-A, GT-B, respectively, (d2-e2) 50 μm treated by GT-A, GT-B, respectively.
Fig. 3. Cross-sectional metallographic microstructure of samples with different scratch depths: (a-c) 30, 70, 110 μm, treated by GT-A, respectively, (d) 50 μm, treated by GT-A, (e) 50 μm, treated by GT-B.
Fig. 4. Cross-sectional metallographic microstructures of samples with different scratch depths by SEM: (a-c) 30, 70, 110 μm, treated by GT-A, respectively, (d) 50 μm,treated by GT-A, (e) 50 μm, treated by GT-B.
Average hardness (GPa) | GT-A | GT-B | Empty Cell | Empty Cell |
---|---|---|---|---|
Empty Cell | Original pipe region | Grinding region | Original pipe region | Grinding |
region | ||||
Row 1 | 3.509 | 3.402 | 3.720 | 3.292 |
Row 2 | 3.410 | 3.201 | 3.304 | 3.340 |
Row 3 | 3.284 | 3.192 | 3.236 | 3.247 |
Row 4 | 3.183 | 3.090 | 3.232 | 3.164 |
Row 5 | 3.110 | 3.072 | 3.210 | 3.256 |
Table 3. Nanoindentation test results of two grinding treatments.
Average hardness (GPa) | GT-A | GT-B | Empty Cell | Empty Cell |
---|---|---|---|---|
Empty Cell | Original pipe region | Grinding region | Original pipe region | Grinding |
region | ||||
Row 1 | 3.509 | 3.402 | 3.720 | 3.292 |
Row 2 | 3.410 | 3.201 | 3.304 | 3.340 |
Row 3 | 3.284 | 3.192 | 3.236 | 3.247 |
Row 4 | 3.183 | 3.090 | 3.232 | 3.164 |
Row 5 | 3.110 | 3.072 | 3.210 | 3.256 |
Fig. 7. TEM observation of the area ground by different two treatments: morphologies at low magnification, BFTEM, DFTEM and SAED images of (a1-d1) the area ground by GT-A, (a2-d2) the area ground by GT-B.
Fig. 8. The observation of microstructure in the area ground by GT-A: (a-b) BFTEM and DFTEM images of the ‘G1’ area in Fig. 7(a1), (c-d) HRTEM images of the ‘c’ and ‘d’ area in (a).
Fig 9. The observation of microstructure in the area ground by GT-B: (a-b) BFTEM and DFTEM images of the ‘G2’ area in Fig. 7(a2), (c) HRTEM images of the ‘c’ area in (a), (d) HRTEM images at the ‘d’ area in (c).
Fig. 10. Cross-sectional and local morphology of samples with scratch depth of 110 μm treated by different grinding treatment after 2000 h corrosion test: (a-b) GT-A, (c-d) GT-B.
Fig. 11. Cross-sectional and local morphology of the sample with a scratch depth of 50 μm treated by different grinding treatment after 1000, 2000 h, 3000 and 4000 h corrosion tests: (a1-a4) GT-A, (b1-b4) GT-B.
Fig. 12. Relationship between crack number, average length and scratch depth by different grinding treatment in corrosion tests with the durations of 1000, 2000, 3000 and 4000 h: (a1-a4) treated by GT-A, (b1-b4) treated by GT-B. (Note: the result of crack number is the sum of three parallel samples with the same depth, and the result of average length is calculated from that three parallel samples).
Fig. 13. SCC behavior in scratched area after corrosion test for 1000 h with depth of 30 μm, 50 μm and 110 μm, respectively: (a1-a3) no grinding, (b1-b3) treated by GT-B.
Fig. 14. Cross-sectional morphologies of samples with scratch depths of 30, 70 and 110 μm treated by GT-A after 2000 h corrosion test: (a1-a3) overview of scratched area, (b1-b3) the location of left APR, (c1-c3) the location of right APR, (d1-d3) the magnified images of (b1-b3), (e2-e3) the magnified images of the bottom of scratch groove, (f1-f3) the magnified images of (c1-c3).
Fig. 15. Cross-sectional morphologies of samples with scratch depths of 10, 30, 50, 70, 90 and 110 μm treated by GT-A after 4000 h corrosion test: (a1-a3) the location of left APR, (b1-b3) overview of scratched area, (c1-c3) the location of right APR.
Length of Cracks on the sidewall (μm) | Scratch depth (μm) | Test time (h) |
---|---|---|
33.6 | 70 | 2000 |
15.47, 7.19 | 110 | 2000 |
6.53, 4.83 | 70 | 4000 |
8.28, 6.62, 5.77, 8.14, 13.6 | 90 | 4000 |
6.03, 10.5 | 110 | 4000 |
Table 4. Information of cracks observed on the sidewall of scratch groove treated by GT-A.
Length of Cracks on the sidewall (μm) | Scratch depth (μm) | Test time (h) |
---|---|---|
33.6 | 70 | 2000 |
15.47, 7.19 | 110 | 2000 |
6.53, 4.83 | 70 | 4000 |
8.28, 6.62, 5.77, 8.14, 13.6 | 90 | 4000 |
6.03, 10.5 | 110 | 4000 |
[1] |
T. Moss, W. Kuang, G.S. Was, Curr. Opin. Solid State Mater. Sci. 22 (2018) 16-25.
DOI URL |
[2] |
J. Huang, X. Wu, E.H. Han, Corros. Sci. 52 (2010) 3444-3452.
DOI URL |
[3] |
F. Ning, J. Tan, X. Wu, J. Mater. Sci. Technol. 47 (2020) 76-87.
DOI URL |
[4] |
S.J. Zinkle, G.S. Was, Acta Mater. 61 (2013) 735-758.
DOI URL |
[5] | R.W. Staehle, J.A. Gorman, Corrosion 59 (2003) 931-994. |
[6] |
F. Ning, J. Tan, Z. Zhang, X. Wu, X. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 66 (2021) 163-176.
DOI URL |
[7] | R.W. Staehle, J.A. Gorman, Corrosion 60 (2004) 5-63. |
[8] |
F. Meng, J. Wang, E.H. Han, W. Ke, Corros. Sci. 51 (2009) 2761-2769.
DOI URL |
[9] |
F. Meng, E.H. Han, J. Wang, Z. Zhang, W. Me, Electrochim. Acta 56 (2011) 1781-1785.
DOI URL |
[10] |
X.Y. Wang, Z.H. Li, Y.K. Bai, X.Y. Cao, T.G. Liu, Y.H. Lu, T. Shoji, Corros. Sci. 182 (2021) 109314.
DOI URL |
[11] | F. Meng, J. Wang, E.H. Han, T. Shoji, W. Ke, Acta Metall. Sin. 47 (2011) 839-846. |
[12] |
B. Wu, H. Ming, Z. Zhang, F. Meng, Y. Li, J. Wang, E.H. Han, Corros. Sci. 192 (2021) 109792.
DOI URL |
[13] |
Z. Zhang, J. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 28 (2012) 785-792.
DOI URL |
[14] |
Y. Hu, J. Wang, W. Ke, E.H. Han, Mater. Corros. 63 (2012) 238-246.
DOI URL |
[15] |
H. Ming, Z. Zhang, J. Wang, E.H. Han, W. Ke, Mater. Charact. 97 (2014) 101-115.
DOI URL |
[16] |
Z. Zhang, J. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 28 (2012) 353-361.
DOI URL |
[17] |
C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, N. Wang, Corros. Sci. 53 (2011) 1880-1886.
DOI URL |
[18] | H.L. Ming, Z.M. Zhang, P.Y. Xiu, J.Q. Wang, E.H. Han, W. Ke, M.X. Su, Acta Metall. Sin. Engl. Lett. 29 (2016) 848-858. |
[19] |
G.T. Gray, Acta Metall. 36 (1988) 1745-1754.
DOI URL |
[20] |
J.C. Huang, G.T. Gray, Acta Metall. 37 (1989) 3335-3347.
DOI URL |
[21] |
F. Cao, I.J. Beyerlein, F.L. Addessio, B.H. Sencer, C.P. Trujillo, E.K. Cerreta, G.T.G. Iii, Acta Mater. 58 (2010) 549-559.
DOI URL |
[22] |
G.T. Gray, Ann. Rev. Mater. Res. 42 (2012) 285-303.
DOI URL |
[23] |
G. Yang, S.Y. Ma, K. Du, D.S. Xu, S. Chen, Y. Qi, H.Q. Ye, J. Mater. Sci. Technol. 35 (2019) 402-408.
DOI URL |
[24] |
H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Acta Mater. 51 (2003) 1871-1881.
DOI URL |
[25] | L. Liu, Y. Li, F. Wang, J. Mater. Sci. Technol. 26 (2010) 1-14. |
[26] |
X.Y. Wang, Z.H. Li, Y.K. Bai, C. Sun, K. Wang, T.G. Liu, Y.H. Lu, T. Shoji, Corros. Sci. 174 (2020) 108806.
DOI URL |
[27] |
W. Kuang, M. Song, G.S. Was, Acta Mater. 151 (2018) 321-333.
DOI URL |
[28] |
X.Y. Wang, Z.H. Li, Y.K. Bai, X.Y. Cao, T.G. Liu, Y.H. Lu, T. Shoji, J. Nucl. Mater. 553 (2021) 153034.
DOI URL |
[29] |
T. Terachi, K. Fujii, K. Arioka, J. Nucl. Sci. Technol. 42 (2005) 225-232.
DOI URL |
[30] |
H.T. Michels, S. Floreen, Metall. Trans. A 8 (1977) 617-620.
DOI URL |
[31] | A. Yazdanpanah, F.R. Biglari, A. Fallahi Arezoodar, M. Dabalà, Sci. Technol. 56 (2020) 81-92. |
[32] |
A. Chaudhari, A.S. Awale, A.K. Chakrabarti, Mater. Res. Express 6 (2019) 1165c9.
DOI URL |
[33] |
S.M. Lee, W.G. Lee, Y.H. Kim, H. Jang, Corros. Sci. 63 (2012) 404-409.
DOI URL |
[34] |
P. Niranatlumpong, H. Koiprasert, Surf. Coat. Technol. 201 (2006) 737-743.
DOI URL |
[35] |
S. Reinemann, P. Rosemann, M. Babutzka, J. Lehmann, A. Burkert, Mater. Corros. 70 (2019) 1776-1787.
DOI |
[36] |
I.S. Jawahir, E. Brinksmeier, R. M’Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, A.D. Jayal, CIRP Ann. 60 (2011) 603-626.
DOI URL |
[37] | Y. Katayama, M. Tsubota, Y. Saito, in: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Sys- tems-Water Reactors, 2005, pp. 31-38. |
[38] |
G.J. Li, Q. Peng, C. Li, Y. Wang, J. Gao, S.Y. Chen, J. Wang, B.L. Shen, Mater. Charact. 59 (2008) 1359-1363.
DOI URL |
[39] | K. Arioka, T. Yamada, T. Miyamoto, T. Terachi, Corrosion 67 (2011) 035006-035001-035006-035018. |
[40] |
J. Hou, Q.J. Peng, Z.P. Lu, T. Shoji, J.Q. Wang, E.H. Han, W Ke, Corros. Sci. 53 (2011) 1137-1142.
DOI URL |
[41] | P.L. Andresen, M.M. Morra, K. Ahluwalia, in: SCC of Alloy 690 and Its Weld Metals, Springer International Publishing, Cham, 2011, pp. 161-178. |
[1] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[2] | Bohong Zhang, Jie Chen, Pengfei Wang, Bingtao Sun, Yu Cao. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique [J]. J. Mater. Sci. Technol., 2022, 111(0): 111-119. |
[3] | Rutuja Mandavkar, Shusen Lin, Rakesh Kulkarni, Sanchaya Pandit, Shalmali Burse, Md Ahasan Habib, Puran Pandey, Sundar Kunwar, Jihoon Lee. Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the AuPt core-shell hybrid NPs [J]. J. Mater. Sci. Technol., 2022, 107(0): 1-13. |
[4] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[5] | Guo-Xiang Zhou, Zhe Zhao, Yan-zhao Zhang, Wen-jin Liu, Zhi-Hua Yang, De-Chang Jia, Yu Zhou. Printing and electromagnetic characteristics of 3D printing frequency selective surface using graphene [J]. J. Mater. Sci. Technol., 2022, 111(0): 49-56. |
[6] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[7] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[8] | M.M. Costa, A. Miranda, F. Bartolomeu, O. Carvalho, S. Matos, G. Miranda, F.S. Silva. NiTi laser textured implants with improved in vivo osseointegration: An experimental study in rats [J]. J. Mater. Sci. Technol., 2022, 114(0): 120-130. |
[9] | Jinghao Li, Kehan Le, Wei Wei. Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering [J]. J. Mater. Sci. Technol., 2022, 102(0): 272-277. |
[10] | S. Pugal Mani, P. Agilan, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng. Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell [J]. J. Mater. Sci. Technol., 2022, 97(0): 134-146. |
[11] | Meifeng Wang, Yiru Qin, Wei Shao, ZhiWang Cai, Xiaoyu Zhao, Yongjun Hu, Tao Zhang, Sheng Li, Mark T. Swihart, Yang Liu, Wei Wei. Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity [J]. J. Mater. Sci. Technol., 2022, 97(0): 223-228. |
[12] | Lei Chen, Yunpeng Wang, Xin Zhao, Yuchao Wang, Qian Li, Qichen Wang, Yougen Tang, Yongpeng Lei. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting [J]. J. Mater. Sci. Technol., 2022, 110(0): 128-135. |
[13] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[14] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[15] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||