J. Mater. Sci. Technol. ›› 2022, Vol. 113: 217-228.DOI: 10.1016/j.jmst.2021.10.028
• Research article • Previous Articles Next Articles
Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin*()
Received:
2021-06-29
Revised:
2021-10-14
Accepted:
2021-10-18
Published:
2022-01-06
Online:
2022-06-24
Contact:
Sung Hun Jin
About author:
* shjin@inu.ac.kr (S.H. Jin).Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors[J]. J. Mater. Sci. Technol., 2022, 113: 217-228.
Fig. 1. (a) Schematic of the fabrication process for composite electrodes NS/NO via hydrothermal growth of nickel oxide on Ni-foam; (b) SILAR overcoating cycles: (i) adsorption, (ii) rinsing, (iii) reaction, and (iv) second rinsing. Schematic cartoons for nickel sulfide composites on the top of nickel oxides prepared by the SILAR process, corresponding to the overcoating from 10 to 30 cycles (NS10, NS20, and NS30).
Fig. 2. FE-SEM morphological transformation from marigold-like nanostructure to honeycomb-like nanostructure. FE-SEM images of NO, NS10/NO, NS20/NO, and NS30/NO on Ni-foam at (a-d) lower magnifications and (e-h) higher magnification; elemental analysis of (i) NO/Ni foam and (j) NS20/NO/Ni.
Fig. 4. Electrochemical properties of binder-free electrodes measured in 1 M KOH electrolyte with a three-electrode system. (a-d) CV curves, (e-h) Galvanostatic charge-discharge curves at different current densities of NO, NS10/NO, NS20/NO, and NS30/NO.
Fig. 5. Comparison of electrochemical performance in a three-electrode system. (a) CV, (b) Galvanostatic discharge, (c) calculated specific capacitance as a function of current density, (d) EIS analysis, (e) Ragone plot, (f) cycling stability of NO, NS10/NO, NS20/NO, NS30/NO electrodes. The inset of (d) shows the magnified EIS spectrum and the fitted circuit element.
Electrode material | Specific capacitance | Cycling stability | Ref. |
---|---|---|---|
NiO nanoflakes | 327 F g-1 at 1 A g-1 | 92% after 500 cycles | [ |
Ce-doped NiO | 1775 F g-1 at 1 A g-1 | 93% after 2000 cycles | [ |
NiO nano/micro sphere | 565 F g-1 at 1 A g-1 | 97% after 2000 cycles | [ |
NiO aerogel | 797 F g-1 at 10 mV s-1 | 93% after 1000 cycles | [ |
NiO quantum dots | 1181.1 F g-1 at 2.1 A g-1 | 87.2% after 5000 cycles | [ |
NiCo2O4/ rGO | 1305 F g-1 at mV s-1 | 89% after 3000 cycles | [ |
Ni-NiO micro flower | 1828 F g-1 at 0.5 A g-1 | 80% after 10,000 cycles | [ |
NiO hydrothermal Growth | 348.21 F g-1 at 1 A g-1 | 78.5% after 3000 cycles | This work |
NS20/NiO | 2077.2 F g-1 at 1 A g-1 | 95% after 10,000 cycles | This work |
Table 1. Electrochemical performance for various NiO and NiO-centered heterostructure-based active electrode materials in aqueous electrolytes in the literature.
Electrode material | Specific capacitance | Cycling stability | Ref. |
---|---|---|---|
NiO nanoflakes | 327 F g-1 at 1 A g-1 | 92% after 500 cycles | [ |
Ce-doped NiO | 1775 F g-1 at 1 A g-1 | 93% after 2000 cycles | [ |
NiO nano/micro sphere | 565 F g-1 at 1 A g-1 | 97% after 2000 cycles | [ |
NiO aerogel | 797 F g-1 at 10 mV s-1 | 93% after 1000 cycles | [ |
NiO quantum dots | 1181.1 F g-1 at 2.1 A g-1 | 87.2% after 5000 cycles | [ |
NiCo2O4/ rGO | 1305 F g-1 at mV s-1 | 89% after 3000 cycles | [ |
Ni-NiO micro flower | 1828 F g-1 at 0.5 A g-1 | 80% after 10,000 cycles | [ |
NiO hydrothermal Growth | 348.21 F g-1 at 1 A g-1 | 78.5% after 3000 cycles | This work |
NS20/NiO | 2077.2 F g-1 at 1 A g-1 | 95% after 10,000 cycles | This work |
Fig. 6. Symmetric supercapacitor device performance. (a, b) CV curves at different scan rates from 5 to 50 mV s-1, (c, d) the Galvanostatic charge-discharge curves at different current densities, (e) the EIS curves, and (f) cycling performance of NO- and NS20/NO-based SSC device, respectively.
Fig. 7. Self-discharge and leakage current Study. (a) Galvanostatic charge-discharge (100 cycles) + voltage holding (2 h) + self-discharge (2 h), (b) GCD + VHT + SD at normalized voltage potential; (c) leakage current during voltage holding measured at OCP for NO-based SSC device. (d) Galvanostatic charge-discharge (100 cycles) + voltage holding (2 h) + self-discharge (2 h), (e) GCD+VHT+SD at normalized voltage potential; (f) leakage current during voltage holding measured at OCP for NS20/NO-based SSC device. Normalized self-discharge voltage potential (g) as a function of linear self-discharge time [(V/Vo) vs t], (h) as a function of log self-discharge time [(V/Vo) vs log t], (i) as a function of the square root of self-discharge time (V/V0) vs t (1/2) for both NO- and NS20/NO-based SC device. [Inset of Fig. 7 (g, h, i) shows the initial period with a similar discharge profile].
[1] |
C. Zhang, Y. Huang, S. Tang, M. Deng, Y. Du, ACS Energy Lett 2 (2017) 759-768.
DOI URL |
[2] | H.A. Andreas, J. Electrochem. Soc. 162 (2015) A5047-A5053. |
[3] | Y. Wen, X. Liu, X. Wen, X. Chen, K. Szyma ´nska, R. Dobrzy ´nska, E. Mijowska, Compos. Part B Eng. (2020) 199. |
[4] |
J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, S.H. Lee, J.H. Lee, Nano Energy 65 (2019) 103999.
DOI URL |
[5] |
A. Bahaa, J. Balamurugan, N.H. Kim, J.H. Lee, J. Mater. Chem. A 7 (2019) 8620-8632.
DOI URL |
[6] |
N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh, S. Ramesh, J. Colloid Interface Sci. 471 (2016) 136-144.
DOI URL |
[7] |
S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5 (2013) 2188-2196.
DOI URL |
[8] |
M. Muthukumaran, C. Venkateswara Raju, C. Sumathi, G. Ravi, D. Solairaj, P. Rameshthangam, J. Wilson, S. Rajendran, S. Alwarappan, New J. Chem. 40 (2016) 2741-2748.
DOI URL |
[9] |
Y. Tang, T. Chen, S. Yu, Y. Qiao, S. Mu, S. Zhang, Y. Zhao, L. Hou, W. Huang, F. Gao, J. Power Sources 295 (2015) 314-322.
DOI URL |
[10] |
J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett 14 (2014) 831-838.
DOI URL |
[11] |
L. Zhang, W. Zheng, H. Jiu, C. Ni, J. Chang, G. Qi, Electrochim. Acta 215 (2016) 212-222.
DOI URL |
[12] | D. Mishra, S. Yeob Kim, S. Hun Jin, Appl. Surf. Sci. (2021) 150436. |
[13] |
N. Kumar, D. Mishra, S.Y. Kim, S.H. Jin, Mater. Lett. 262 (2020) 127173.
DOI URL |
[14] |
P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, M.V. Reddy, J. Mater. Chem. A 5 (2017) 22040-22094.
DOI URL |
[15] |
J. Balamurugan, C. Li, V. Aravindan, N.H. Kim, J.H. Lee, Adv. Funct. Mater. 28 (2018) 1803287.
DOI URL |
[16] |
P. Justin, S.K. Meher, G.R. Rao, J. Phys. Chem. C 114 (2010) 5203-5210.
DOI URL |
[17] |
S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interfaces 5 (2013) 1596-1603.
DOI URL |
[18] |
S.K. Meher, P. Justin, G.Ranga Rao, ACS Appl. Mater. Interfaces 3 (2011) 2063-2073.
DOI URL |
[19] |
F. Hekmat, S. Shahrokhian, H. Hosseini, Compos. Part B Eng. 172 (2019) 41-53.
DOI URL |
[20] |
M.A. Peck, M.A. Langell, Chem. Mater. 24 (2012) 4483-4490.
DOI URL |
[21] |
W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, Sci. Rep. 7 (2017) 5220.
DOI PMID |
[22] |
W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen, X. Guan, Chem. Mater. 26 (2014) 3418-3426.
DOI URL |
[23] |
F. Chen, C. Chen, Q. Hu, B. Xiang, T. Song, X. Zou, W. Li, B. Xiong, M. Deng, Chem. Eng. J. 401 (2020) 126145.
DOI URL |
[24] |
D.S. Patil, S.A. Pawar, J.C. Shin, Chem. Eng. J. 335 (2018) 693-702.
DOI URL |
[25] | F. Cao, L. Meng, M. Wang, W. Tian, L. Li, Adv. Mater. 31 (2019) 1-7. |
[26] | J. Qi, Y. Yan, Y. Cai, J. Cao, J. Feng, Adv. Funct. Mater. 31 (2021) 1-25. |
[27] |
J. Feng, A.A. Hamza, S.M. El-Refaei, A.A. Elzatahry, A.M. Abdullah, Appl. Sci. 7 (2017) 1-13.
DOI URL |
[28] |
P.E. Saranya, S. Selladurai, New J. Chem. 43 (2019) 7441-7456.
DOI |
[29] |
C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem. 19 (2009) 5772-5777.
DOI URL |
[30] |
Z. Zhang, Q. Gao, H. Gao, Z. Shi, J. Wu, M. Zhi, Z. Hong, RSC Adv. 6 (2016) 112620-112624.
DOI URL |
[31] |
M. Jing, C. Wang, H. Hou, Z. Wu, Y. Zhu, Y. Yang, X. Jia, Y. Zhang, X. Ji, J. Power Sources 298 (2015) 241-248.
DOI URL |
[32] |
P. Osaimany, A.S. Samuel, Y. Johnbosco, Y.P. Kharwar, V. Chakravarthy, Compos. Part B Eng. 176 (2019) 107327.
DOI URL |
[33] | S. Ci, Z. Wen, Y. Qian, S. Mao, S. Cui, J. Chen, Sci. Rep. 5 (2015) 1-12. |
[34] |
D.L. Fang, Z.D. Chen, X. Liu, Z.F. Wu, C.H. Zheng, Electrochim. Acta 81 (2012) 321-329.
DOI URL |
[35] |
L. Wang, J. Zhang, W. Jiang, H. Zhao, H. Liu, Appl. Surf. Sci. 433 (2018) 88-93.
DOI URL |
[36] |
M. Zhi, A. Manivannan, F. Meng, N. Wu, J. Power Sources 208 (2012) 345-353.
DOI URL |
[37] |
H. Li, S. Liu, C. Huang, Z. Zhou, Y. Li, D. Fang, Electrochim. Acta 58 (2011) 89-94.
DOI URL |
[38] |
M.S. Wu, H.H. Hsieh, Electrochim. Acta 53 (2008) 3427-3435.
DOI URL |
[39] |
H. Gao, F. Xiao, C.B. Ching, H. Duan, ACS Appl. Mater. Interfaces 4 (2012) 2801-2810.
DOI URL |
[40] |
J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources 101 (2001) 109-116.
DOI URL |
[41] | M.K. Paliwal, S.K. Meher, Adv. Mater. Interfaces 6 (2019) 1-13. |
[42] |
J. Balamurugan, C. Li, T.D. Thanh, O.-.K. Park, N.H. Kim, J.H. Lee, J. Mater. Chem. A 5 (2017) 19760-19772.
DOI URL |
[43] |
J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Adv. Funct. Mater. 28 (2018) 1804663.
DOI URL |
[44] | R.K. Mishra, D. Mishra, M. Krishnaiah, S.Y. Kim, S.H. Jin, Ceram. Int. (2020) 1-9. |
[45] |
H.A. Andreas, J.M. Black, A.A. Oickle, Electrochim. Acta 140 (2014) 116-124.
DOI URL |
[46] |
B.E. Conway, W.G. Pell, T.C. Liu, J. Power Sources 65 (1997) 53-59.
DOI URL |
[47] |
J. Niu, B.E. Conway, W.G. Pell, J. Power Sources 135 (2004) 332-343.
DOI URL |
[48] |
J. Black, H.A. Andreas, Electrochim. Acta 54 (2009) 3568-3574.
DOI URL |
[49] |
E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S.A. Fre-unberger, F. Favier, O. Fontaine, Nat. Mater. 16 (2017) 446-454.
DOI URL |
[50] | W. Zheng, J. Halim, Z.M. Sun, J. Rosen, M.W. Barsoum, Energy Storage Mater 38 (2021) 438-446. |
[1] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[2] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[3] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[4] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[5] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[6] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[7] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[8] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[9] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[10] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[11] | Meng Wang, Kailiang Jian, Zepeng Lv, Dong Li, Gangqiang Fan, Run Zhang, Jie Dang. MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 29-34. |
[12] | Yutao Hu, Hongwei Chu, Daozhi Li, Ying Li, Shengzhi Zhao, Li Dong, Dechun Li. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region [J]. J. Mater. Sci. Technol., 2021, 81(0): 51-57. |
[13] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[14] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[15] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||