J. Mater. Sci. Technol. ›› 2022, Vol. 110: 24-34.DOI: 10.1016/j.jmst.2021.08.072
• Research Article • Previous Articles Next Articles
Qiong Lua,b,*(
), Yaozha Lva, Chi Zhangb, Hongbo Zhanga, Wei Chena, Zhanyuan Xua, Peizhong Fengc, Jinglian Fana,*(
)
Received:2021-06-24
Revised:2021-08-09
Accepted:2021-08-24
Published:2021-11-06
Online:2021-11-06
Contact:
Qiong Lu,Jinglian Fan
About author:fjl@csu.edu.cn (J. Fan).Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement[J]. J. Mater. Sci. Technol., 2022, 110: 24-34.
Fig. 4. Microscopic structure of N10. (a) SEM-BSE images, (b)-(e) TEM images in areas 1 and 2 in Fig. 4(a) and the selected area electron diffraction (SAED) patterns of areas A and B.
Fig. 5. Oxidation performance of TMCs. (a) Oxidation kinetics of H5, N10, and H15 composites at 800 °C for 120 h, (b) Oxidation rates comparison of H5, N10, H15, and other TMCs [41], [42], [43], [44].
Fig. 8. Microscopic structure of the inner oxide layer as shown in Region 1 of Fig. 7(b). (a) TEM image, (b, c) SAED patterns of areas 2 and 1, (d) HRTEM of area A in Fig. 8(a).
Fig. 10. Microscopic structure of internal interface layer. (a) TEM image of Region 2 in Fig. 7(b), (b) a larger version, and (c) SAED pattern of area 1 in Fig. 10(a).
Fig. 12. Nitridation of Ti5Si3. (a) TEM image of area 3 in Fig. 10(b), (b) HRTEM image of area A in Fig. 12(a), (c)-(h) FFT patterns of areas 1 to 6 in Fig. 12(b), (i) HRTEM image of area B in Fig. 12(a).
Fig. 13. Microstructure of TiN twin at the interface of oxide layer and matrix. (a) TEM image of area 2 in Fig. 10(a), (b) SAED pattern of area 1 in Fig. 13(a), (c) HRTEM image of TiN twins aligned into [011] zone axis.
Fig. 14. Microscopic structure of N10 matrix after exposure. (a) TEM image of Region 3 in Fig. 7(b), (b, c) SAED patterns of areas 1 and 2 in Fig. 14(a).
Fig. 16. Residual stress distribution after exposure. (a) N10 condition, (b) H5 condition, (c) H15 condition, (d)-(g) Examples of local hotspots in H5 and H15 conditions.
| [1] |
M. Bönisch, A. Panigrahi, M. Stoica, M. Calin, E. Ahrens, M. Zehetbauer, W. Skrotzki, J. Eckert, Nat. Commun. 8 (1) (2017) 1429.
DOI URL |
| [2] |
G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, C.T. Liu, Nat. Mater. 15 (8) (2016) 876-881.
DOI URL |
| [3] |
T.M. Pollock, Nat. Mater. 15 (8) (2016) 809.
DOI PMID |
| [4] |
Z.C. Sun, S.S. Guo, H. Yang, Acta Mater. 61 (6) (2013) 2057-2064.
DOI URL |
| [5] |
S. Challipalli, H.F. Francis, Adv. Mater. 5 (2) (1993) 96-106.
DOI URL |
| [6] | Y.C. Shi, L.T. Wang, Y.M. Niu, N. Yu, P.F. Xing, L. Dong, C.M. Wang, Adv. Funct. Mater. 28 (46) (2018) 1804473. |
| [7] |
M. Uchida, A. Oyane, H.M. Kim, T. Kokubo, A. Ito, Adv. Mater. 16 (13) (2004) 1071-1074.
DOI URL |
| [8] |
R.S. Bedi, L.P. Zanello, Y. Yan, Adv. Funct. Mater. 19 (24) (2009) 3856-3861.
DOI URL |
| [9] | L.J. Huang, L. Geng, in: Discontinuously Reinforced Titanium Matrix Compos- ites, Springer, Singapore, 2017, pp. 1-15. |
| [10] | B. Wang, H.B. Zhang, L.J. Huang, J.L. He, Y.F. Zhang, W. Wang, Sci. China Tech- nol. Sci. 61 (9) (2018) 1340-1345. |
| [11] | L.J. Huang, Q. An, L. Geng, S. Wang, S. Jiang, X.P. Cui, R. Zhang, F.B. Sun, Y. Jiao, X. Chen, C.Y. Wang, Adv. Mater. 33 (6) (2020) 2000688. |
| [12] |
Z.H. Gao, Z.B. Zhang, X. Zhang, J. Kulczyk-Malecka, H. Liu, P. Kelly, P.J. Withers, P. Xiao, Acta Mater. 189 (2020) 274-283.
DOI URL |
| [13] | S.Q. Tang, S.J. Qu, A.H. Feng, C. Feng, J. Shen, D.L. Chen, Sci. Rep. 7 (1) (2017) 3483. |
| [14] |
Q.M. Wang, A. Flores Renteria, O. Schroeter, R. Mykhaylonka, C. Leyens, W Garkas, M. Baben, Surf. Coat. Technol. 204 (15) (2010) 2343-2352.
DOI URL |
| [15] |
H.L. Du, P.K. Datta, D.B. Lewis, J.S. Burnell-Gray, Corros. Sci. 36 (4) (1994) 631-642.
DOI URL |
| [16] |
W. Li, S. Zhu, C. Wang, M. Chen, M. Shen, F. Wang, Corros. Sci. 74 (2013) 367-378.
DOI URL |
| [17] |
I. Gurrappa, A.K. Gogia, Mater. Sci. Technol. 17 (5) (2001) 581-587.
DOI URL |
| [18] |
R.A. Yankov, A. Kolitsch, J.V. Borany, A. Mücklich, F. Munnik, A. Donchev, M. Schütze, Surf. Coat. Technol. 206 (17) (2012) 3595-3600.
DOI URL |
| [19] |
A. Brotzu, F. Felli, D. Pilone, Intermetallics 54 (2014) 176-180.
DOI URL |
| [20] |
S.J. Qu, S.Q. Tang, A.H. Feng, C. Feng, J. Shen, D.L. Chen, Acta Mater. 148 (2018) 300-310.
DOI URL |
| [21] |
J.P. Lin, L.L. Zhao, G.Y. Li, L.Q. Zhang, X.P. Song, F. Ye, G.L. Chen, Intermetallics 19 (2) (2011) 131-136.
DOI URL |
| [22] | Q. Lu, Y.N. Hao, Y.Y. Wang, P.Z. Feng, J.L. Fan, Corros. Sci. 161 (2019) 108180. |
| [23] |
S. Thongtem, T. Thongtem, M. Mcnallan, Surf. Interface Anal. 32 (1) (2015) 306-309.
DOI URL |
| [24] | A. Knaislová, P. Novák, F. Pr ˚uša, M. Cabibbo, L. Jaworsk, D. Vojt ˇech, J. Alloy. Compd. 810 (2019) 151895. |
| [25] |
S.L. Wei, L.J. Huang, Y.T. Zhu, Z. Shi, X.T. Li, L. Geng, npj Mater. Degrad. 3 (1) (2019) 1-5.
DOI URL |
| [26] |
L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71 (2015) 93-168.
DOI URL |
| [27] |
Y. Jiao, L.J. Huang, S. Wang, X.T. Li, Q. An, X.P. Cui, L. Geng, J. Alloy. Compd. 704 (2017) 269-281.
DOI URL |
| [28] |
S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng. R Rep. 29 (3-4) (2000) 49-113.
DOI URL |
| [29] |
W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, Scr. Mater. 44 (2001) 1069-1075.
DOI URL |
| [30] |
D.R. Ni, L. Geng, J. Zhang, Z.Z. Zhang, Scr. Mater. 55 (5) (2006) 429-432.
DOI URL |
| [31] |
S. Gorsse, D.B. Miracle, Acta Mater. 51 (9) (2003) 2427-2442.
DOI URL |
| [32] |
D. Zhao, H. Geng, X. Teng, J. Alloy. Compd. 517 (15) (2012) 198-203.
DOI URL |
| [33] |
J.H. Schneibel, C.J. Rawn, Acta Mater. 52 (13) (2004) 3843-3848.
DOI URL |
| [34] |
J. Zhu, A. Kamiya, T. Yamada, A. Watazu, W. Shi, K. Naganuma, Mater. Trans. 42 (2) (2001) 336-341.
DOI URL |
| [35] |
T. Serhii, C. Jan, M. Radek, D. Karel, S. Zdenek, B.M. Edgar, J. Alloy. Compd. 764 (2018) 776-788.
DOI URL |
| [36] |
R.O. Ritchie, Nat. Mater. 10 (11) (2011) 817-822.
DOI PMID |
| [37] |
F. Zhang, T. Liu, Compos. B Eng. 165 (2019) 143-154.
DOI URL |
| [38] | Determination of Adhesion and Other Mechanical Failure Modes By a Scratch Test, British Standards Institution, London, UK, 2016. |
| [39] |
Y.W. Gu, L.S. Goi, A. E.W. Jarfors, D.L. Butler, C.S. Lim, Phys. B 352 (1-4) (2004) 299-304.
DOI URL |
| [40] | Y. Jiao, L.J. Huang, T.B. Duan, S.L. Wei, B. Kaveendran, L. Geng, Sci. Rep. 6 (1) (2016) 1-10. |
| [41] |
W.G. Burgers, Physica 1 (7-12) (1934) 561-586.
DOI URL |
| [42] | Y. Garip, O. Ozdemir, J. Alloy. Compd. 818 (2020) 152818. |
| [43] | J.M. Xiang, G.B. Mi, S.J. Qu, X. Huang, Z. Chen, A.H. Feng, J. Shen, D.L. Chen, Sci. Rep. 8 (1) (2018) 1-11. |
| [44] |
X.J. Xu, Y.G. Liu, V. Tabie, C.B. Cai, Y.S. Xiao, X. Zhang, C. Li, Z. Jiang, Q.J. Liu, H. Chen, Appl. Phys. A 126 (4) (2020) 254.
DOI URL |
| [45] |
Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, S. Yue, Corro. Sci. 140 (2018) 223-230.
DOI URL |
| [46] | J.L. Fan, Q. Lu, P.Z. Feng, W. Li, Ceram. Int. 43 (18) (2017) 16362-16370. |
| [47] |
Y. Zeng, D.N. Wang, X. Xiong, X. Zhang, P.J. Withers, W. Sun, M. Smith, M.W. Bai, P. Xiao, Nat. Commun. 8 (1) (2017) 15836.
DOI URL |
| [48] | C. Wagner, Z. Phys. Chem. 21 (1) (1933) 25-41. |
| [49] |
Z. Shen, K. Chen, H.B. Yu, B. Jenkins, Y.R. Ren, N. Saravanan, G.Z. He, X.N. Luo, P. A.J. Bagot, M.P. Moody, L.F. Zhang, S. Lozano-Perez, Acta Mater. 194 (2020) 522-539.
DOI URL |
| [50] |
Z. Shen, D. Tweddle, H.B. Yu, G.Z. He, A. Varambhia, P. Karamched, F. Hofmann, A.J. Wilkinson, M.P. Moody, L.F. Zhang, S. Lozano-Perez, Acta Mater. 194 (2020) 321-336.
DOI URL |
| [51] |
S.L. Wei, L.J. Huang, X.T. Li, Q. An, L. Geng, J. Alloy. Compd. 752 (2018) 164-178.
DOI URL |
| [52] |
J.I. Goldstein, S.K. Choi, F.V. Loo, G.F. Bastin, R. Metselaar, J. Am. Ceram. Soc. 78 (2) (1995) 313-322.
DOI URL |
| [53] |
Z. Tang, J.J. Williams, A.J. Thom, M. Akinc, Intermetallics 16 (9) (2008) 1118-1124.
DOI URL |
| [54] |
L. Lu, X. Chen, X. Huang, K. Lu, Science 323 (5914) (2009) 607-610.
DOI PMID |
| [55] | B. Lenz, H. Hasselbruch, H. Gromann, A. Mehner, Surf. Coat. Technol. 393 (2020) 125764. |
| [56] | Z.R. Liu, Y.X. Xu, B. Peng, W. Wei, L. Chen, Q.M. Wang, J. Alloy. Compd. 808 (2019) 151630. |
| [57] | S. Zhang, D. Sun, Y. Fu, H. Du, Thin Solid Films 447 (2004) 462-467. |
| [58] |
J. Musil, Surf. Coat. Technol. 207 (2012) 50-65.
DOI URL |
| [59] | J.R. Nicholls, JOM 52 (1) (2000) 28-35. |
| [60] | X. Li, X.Y. Peng, Y.L. Duan, L.G. Zhang, Y.R. Zhao, X.W. Wang, G.F. Xu, Chin. J. Nonferr. Met. 23 (8) (2013) 2190-2199. |
| [61] | A.L. Zhao, D.Y. Wang, Y. Wang, X.Y. Gao, J. Hu, Titan. Ind. Prog. 30 (1) (2013) 16-19. |
| [62] |
X.B. Lin, S.L. Du, J.W. Long, L. Chen, Y.Z. Wang, ACS Appl. Mater. Interfaces 8 (1) (2016) 881-890.
DOI URL |
| [63] | T.A. Wallace, R.K. Clark, K.E. Wiedemann, Oxid. Met. 42 (5) (1994) 451-464. |
| [64] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Tech- nol. 44 (2020) 171-190. |
| [65] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (4) (2016) 2404-2415.
DOI URL |
| [66] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
| [1] | S.B. Wang, C.F. Pan, B. Wei, X. Zheng, Y.X. Lai, J.H. Chen. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 216-226. |
| [2] | Luo Jiasi, Sun Wanting, Duan Ranxi, Yang Wenqing, Chan K.C., Ren Fuzeng, Yang Xu-Sheng. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
| [3] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
| [4] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
| [5] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
| [6] | Y.T. Zhou, X.H. Shao, S.J. Zheng, X.L. Ma. Structure evolution of the Fe3C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires [J]. J. Mater. Sci. Technol., 2022, 101(0): 28-36. |
| [7] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
| [8] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
| [9] | J.F. Zhao, H.P. Wang, B. Wei. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100(0): 246-253. |
| [10] | Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip [J]. J. Mater. Sci. Technol., 2022, 107(0): 183-196. |
| [11] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
| [12] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
| [13] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
| [14] | Kewu Bai, Ming Lin. Unravelling the metal borides evolution in the transient liquid phase bonding of Ni-based alloys via high-throughput transmission electron microscopy and first-principles thermo-kinetic calculations [J]. J. Mater. Sci. Technol., 2021, 85(0): 118-128. |
| [15] | Min Zha, Hong-Min Zhang, Xiang-Tao Meng, Hai-Long Jia, Shen-Bao Jin, Gang Sha, Hui-Yuan Wang, Yan-Jun Li, Hans J. Roven. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation [J]. J. Mater. Sci. Technol., 2021, 89(0): 141-149. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
