J. Mater. Sci. Technol. ›› 2022, Vol. 98: 160-168.DOI: 10.1016/j.jmst.2021.05.019
• Research Article • Previous Articles Next Articles
Cheng Chenga, Chung-Li Dongb, Jinwen Shia,*(), Liuhao Maoa, Yu-Cheng Huangb, Xing Kanga, Shichao Zonga, Shaohua Shena
Received:
2021-03-09
Revised:
2021-05-09
Accepted:
2021-05-11
Published:
2022-01-30
Online:
2022-01-25
Contact:
Jinwen Shi
About author:
*E-mail address: jinwen_shi@mail.xjtu.edu.cn (J. Shi).Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation[J]. J. Mater. Sci. Technol., 2022, 98: 160-168.
Fig. 2. (a) N K-edge XANES, (b) C K-edge XANES and (c) EPR spectra for TSC-550 and TU-550; (d) proposed structure of thiosemicarbazide-derived graphitic carbon nitride.
Fig. 4. (a) Steady-state PL spectra, (b) time-resolved transient PL decay spectra, (c) C K-edge and (d) N K-edge XANES spectra with or without illumination for TSC-550 and TU-550.
Fig. 5. (a) Apparent Zeta potential, (b) CV curves, (c) EIS plots and (d) time courses of transient photocurrent density curves for TSC-550 and TU-550.
Fig. 6. (a) Photocatalytic H2-production activities for TU-550, 550 and TSC-550+K2HPO4 under visible-light irradiation (λ > 420 nm); (b) wavelength-dependent AQYs for TSC-550 at different wavelengths (425, 440, 480, 520 and 550 nm); (c) photocatalytic H2-production activities for TSC-550 under different light-spectrum irradiation (λ > 420, 450, 480, 500, 530 and 560 nm); (d) photocatalytic H2-production stability test for TSC-550 under visible-light irradiation (λ > 420 nm). “TSC-550+K2HPO4” represented the photocatalytic H2-production activity for TSC-550 by adding 0.08 mol of K2HPO4 in the reaction solution while keeping other measurement conditions the same.
Fig. 7. (a) TEM image of TSC-550NS, (b) N2 adsorption-desorption isotherms for TSC-550 and TSC-550NS, (c) photocatalytic H2-evolution activities for TSC-550, TSC-550+K2HPO4, TSC-550NS and TSC-550NS+K2HPO4 under visible-light irradiation (λ > 420 nm), (d) wavelength-dependent AQYs for TSC-550NS at different wavelength (425, 440, 480, 520 and 550 nm). “TSC-550NS+K2HPO4” represented the photocatalytic H2-production activity for TSC-550 by adding 0.08 mol of K2HPO4 in the reaction solution while keeping other measurement conditions the same.
[1] |
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
DOI URL |
[2] |
Q. Wang, K. Domen, Chem. Rev. 120 (2019) 919-985.
DOI URL |
[3] |
W. Ding, J. Shi, W. Wei, C. Cao, H. Jin, Int. J. Hydrogen Energy. 46 (2021) 2899-2904.
DOI URL |
[4] |
L. Zhao, Y. Qi, L. Song, S. Ning, S. Ouyang, H. Xu, J. Ye, Angew. Chem. 131 (2019) 7790-7794.
DOI URL |
[5] |
Y. Wang, Y. Zhang, B. Li, K. Luo, K. Shi, L. Zhang, Y. Li, T. Yu, W. Hu, C. Xie, Y. Wu, L. Su, X. Dong, Z. Zhao, G. Yang, Nano Energy 77 (2020) 105124.
DOI URL |
[6] |
C. Zhao, Z. Chen, R. Shi, X. Yang, T. Zhang, Adv. Mater. 32 (2020) 1907296.
DOI URL |
[7] | C. Cheng, L. Mao, J. Shi, F. Xue, S. Zong, B. Zheng, L. Guo J. Mater. Chem. A (2021), doi: 10.1039/D1TA00241D. |
[8] |
Z. Zhou, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Chem. Soc. Rev. 47 (2018) 2298-2321.
DOI URL |
[9] |
D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew. Chem. Int. Ed. 53 (2014) 9240-9245.
DOI URL |
[10] |
Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, H. Li, RSC Adv. 5 (2015) 101552-101562.
DOI URL |
[11] |
M.Z. Rahman, K. Davey, C.B. Mullins, Adv. Sci. 5 (2018) 1800820.
DOI URL |
[12] |
H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, J. Qu, Appl. Catal. B Environ. 204 (2017) 49-57.
DOI URL |
[13] |
G. Zhang, J. Zhang, M. Zhang, X. Wang. J. Mater. Chem. 22 (2012) 8083.
DOI URL |
[14] |
F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Catal. Sci. Technol. 2 (2012) 1332.
DOI URL |
[15] |
C. Cheng, S. Zong, J. Shi, F. Xue, Y. Zhang, X. Guan, B. Zheng, J. Deng, L. Guo, Appl. Catal. B Environ. 265 (2020) 118620-118628.
DOI URL |
[16] |
Q. Han, Z. Cheng, B. Wang, H. Zhang, L. Qu, ACS Nano 12 (2018) 5221-5227.
DOI URL |
[17] |
Y. Zhang, S. Zong, C. Cheng, J. Shi, P. Guo, X. Guan, B. Luo, S. Shen, L. Guo, Appl. Catal. B Environ. 233 (2018) 80-87.
DOI URL |
[18] |
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25 (2013) 2452-2456.
DOI URL |
[19] |
G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, J. Ye, Adv. Funct. Mater. 26 (2016) 6 822-6 829.
DOI URL |
[20] |
T. Song, P. Zhang, T. Wang, A. Ali, H. Zeng, Appl. Catal. B Environ. 224 (2018) 877-885.
DOI URL |
[21] |
A. Jin, Y. Jia, C. Chen, X. Liu, J. Jiang, X. Chen, F. Zhang. J. Phys. Chem. C. 121 (2017) 21497-21509.
DOI URL |
[22] |
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L. Wu, C. Tung, T. Zhang, Adv. Mater. 29 (2017) 1605148.
DOI URL |
[23] |
F. Xue, Y. Si, M. Wang, M. Liu, L. Guo, Nano Energy 62 (2019) 823-831.
DOI URL |
[24] |
F. Xue, M. Liu, C. Cheng, J. Deng, J. Shi, ChemCatChem. 10 (2018) 5441-5448.
DOI URL |
[25] |
X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, J. Phys. Chem. C 116 (2012) 23485-23493.
DOI URL |
[26] |
H. Katsumata, K. Sakakibara, I. Tateishi, M. Furukawa, S. Kaneco, Catal. Today 352 (2020) 47-53.
DOI URL |
[27] |
D. Zhang, Y. Guo, Z. Zhao, Appl. Catal. B Environ. 226 (2018) 1-9.
DOI URL |
[28] |
J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 4 (2011) 675-678.
DOI URL |
[29] |
Y.-S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky, A. Thomas, Adv. Funct. Mater. 23 (2013) 3661-3667.
DOI URL |
[30] |
D. Zhao, C.L. Dong, B. Wang, C. Chen, Y. Huang, Z. Diao, S. Li, L. Guo, S. Shen, Adv. Mater. 31 (2019) 1903545-1903554.
DOI URL |
[31] |
J. Chen, C.-L. Dong, D. Zhao, Y.-C. Huang, X. Wang, L. Samad, L. Dang, M. Shearer, S. Shen, L. Guo, Adv. Mater. 29 (2017) 1606198-1606207.
DOI URL |
[32] |
D. Zhao, J. Chen, C.-L. Dong, W. Zhou, Y. Huang, S.S. Mao, L. Guo, S. Shen, J. Catal. 352 (2017) 491-497.
DOI URL |
[33] |
L. Zhang, N. Ding, J. Wu, K. Iwasaki, L. Lin, Y. Yamaguchi, Y. Shibayama, J. Shi, H. Wu, Y. Luo, K. Nakata, D. Li, X. Wang, A. Fujishima, Q. Meng, Catal. Sci. Technol. 8 (2018) 3846-3852.
DOI URL |
[34] | Z. Chen, T. Fan, M. Shao, X. Yu, Q. Wu, J. Li, W. Fang, X. Yi, Appl. Catal. B Envi- ron. 242 (2019) 40-50. |
[35] |
V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Chem. Mater. 12 (2000) 3264-3270.
DOI URL |
[36] | C. Cheng, J. Shi, F. Du, S. Zong, X. Guan, Y. Zhang, M. Liu, L. Guo, Catal. Sci. & Technol. 9 (2019) 7016-7022. |
[37] |
X. Li, J. Xiong, X. Gao, J. Ma, Z. Chen, B. Kang, J. Liu, H. Li, Z. Feng, J. Huang. J. Hazard. Mater. 387 (2020) 121690.
DOI URL |
[38] |
H. Jiang, X. Li, M. Li, P. Niu, T. Wang, D. Chen, J. Zou, Chem. Eng. J. 358 (2019) 58-66.
DOI URL |
[39] |
D. Zhang, B. Mao, D. Li, Y. Liu, F. Li, W. Dong, T. Jiang, W. Shi, Chem. Eng. J. 417 (2021) 128275.
DOI URL |
[40] |
S. Sun, G. Shen, J. Jiang, W. Mi, X. Liu, L. Pan, X. Zhang, J. Zou, Adv. Energy Mater. 9 (2019) 1901505.
DOI URL |
[41] |
X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 59 (2019) 644-650.
DOI URL |
[42] |
Y. Kang, Y. Yang, L.-C. Yin, X. Kang, G. Liu, H.-M. Cheng, Adv. Mater. 27 (2015) 4572-4577.
DOI URL |
[43] |
W. Li, A.M. Lane, Electrochem. Commun. 13 (2011) 913-916.
DOI URL |
[44] |
Y. Zheng, Y. Jiao, A. Vasileff, S. Qiao, Angew. Chem. Int. Ed. 57 (2018) 7568-7579.
DOI URL |
[45] |
G. Liu, T. Wang, H. Zhang, X. Meng, D. Hao, K. Chang, P. Li, T. Kako, J. Ye, Angew. Chem. Int. Ed. 54 (2015) 13561-13565.
DOI URL |
[46] |
G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 3433-3437.
DOI URL |
[1] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
[2] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[3] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
[4] | Ying Li, Changdan Gong, Chenggong Li, Kunpeng Ruan, Chao Liu, Huan Liu, Junwei Gu. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. J. Mater. Sci. Technol., 2021, 82(0): 250-256. |
[5] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[6] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[7] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[8] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[9] | Yue Tian, Qingqiang Cui, Linlin Xu, Anxin Jiao, Shuang Li, Xuelin Wang, Ming Chen. Pronounced interfacial interaction in icosahedral Au@C60 core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition [J]. J. Mater. Sci. Technol., 2021, 94(0): 10-21. |
[10] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
[11] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[12] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[13] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[14] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[15] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||