J. Mater. Sci. Technol. ›› 2022, Vol. 96: 126-139.DOI: 10.1016/j.jmst.2021.03.081
• Research Article • Previous Articles Next Articles
Mengcheng Zhou, Xinfang Zhang*()
Received:
2021-01-21
Revised:
2021-03-04
Accepted:
2021-03-07
Published:
2022-01-10
Online:
2022-01-05
Contact:
Xinfang Zhang
About author:
*E-mail address: xfzhang@ustb.edu.cn (X. Zhang).Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel[J]. J. Mater. Sci. Technol., 2022, 96: 126-139.
Fig. 1. Schematic illustration of (a?c) the cross cold rolling process: (a) selecting 0.3 mm finished oriented silicon steel as the raw material for cross-rolling, (b) rolling to a thickness of 0.2 mm (~33% reduction) in the first direction (CRD1), (c) rolling to a thickness of 0.1 mm (~50% reduction) in the second direction (CRD2), (d) the 0.1 mm cold-rolled strip; (e) the device for electric pulsed treatment; (f) the temperature rise and heating rate caused by the pulsed electric current; (g) the relationship between pulse duration and temperature rise.
Fig. 2. φ2=45° ODF sections showing textures (a) before cold rolling, (b) after cold rolling, (c) after annealing for 5 min under THT, and (d) after treating for 5 min under EPT. (e) Guide for several crystal orientations in φ2=45° ODF section.
Fig. 3. (a) Cold rolling strip photo, (b) EBSD band contrast map and (c) inverse pole figure map of the cold-rolled sample. Local deformed region of (d) inverse pole figure map and (e) band contrast map. (f) The point-to-point misorientation profiles along two lines (L1 and L2) in the deformed region.
Fig. 4. Orientations of microstructure after pulsed treatment at 750 °C: (a) EBSD inverse pole figure (IPF) map, (b) orientation image map (OIM, 10° tolerance) of grains, (c) EBSD IPF map in region A, (d) OIM map in region A, (e) φ2=45° ODF section of region A, (f) φ2=45° ODF section of region B.
Fig. 5. Orientations of microstructure after pulsed treatment at 800 °C: (a) EBSD IPF map, (b) OIM (10° tolerance) of grains, (c) inverse pole figure map, (d) the volume fraction diagram of recrystallized grains.
Fig. 6. φ2=45° ODF section of the pulsed sample (800 °C) with different processing time: (a) 1 min, (b) 2 min, (c) 3 min and (d) 4 min. (e) Typical texture rotation path under pulsed electric current displayed in φ2=45° ODF section.
Fig. 7. Orientations of microstructure after pulsed treatment at 900 °C: (a) EBSD IPF map, (b) OIM (10° tolerance) of grains, (c) φ2=45° ODF section, (d) the volume fraction diagram of recrystallized grains.
Fig. 8. Orientations of microstructure after pulsed treatment at 1000 °C: (a) EBSD IPF map, (b) OIM (10° tolerance) of grains, (c) φ2=45° ODF section, (d) the volume fraction diagram of recrystallized grains.
Fig. 9. Orientations of microstructure after annealed treatment at 750 °C: (a) EBSD IPF map, (b) OIM (10° tolerance) of grains, (c) the volume fraction diagram of recrystallized grains; Orientations of microstructure after annealed treatment at 800 °C: (d) EBSD IPF map, (e) OIM (10° tolerance) of grains, (f) the volume fraction diagram of recrystallized grains.
Fig. 10. Orientations of microstructure after annealed treatment at 900 °C: (a) EBSD IPF map, (b) OIM (10° tolerance) of grains, (c) the volume fraction diagram of recrystallized grains, (d) φ2=45° ODF section; Orientations of microstructure after annealed treatment at 1000 °C: (e) EBSD IPF map, (f) OIM (10° tolerance) of grains, (g) the volume fraction diagram of recrystallized grains, (h) φ2=45° ODF section.
Fig. 11. EBSD IPF map of annealed sample at (a) 1030 °C, (b) 1060 °C, (c) 1100 °C; OIM (10° tolerance) of grains at (d) 1030 °C, (e) 1060 °C, (f) 1100 °C annealed samples.
Fig. 12. φ2=45° ODF section of annealed sample at (a) 1030 °C, (b) 1060 °C, (c) 1100 °C; the volume fraction diagram of recrystallized grains at (d) 1030 °C, (e) 1060 °C, (f) 1100 °C annealed samples.
Fig. 13. Orientations of microstructure after rapid heating treatment at 51.9 °C/s (to 750 °C): (a) EBSD IPF map, (b) φ2=45° ODF section, (c) OIM (10° tolerance) of grains, (d) the volume fraction diagram of recrystallized grains.
Fig. 14. EBSD IPF map of rapid heating sample at (a) 60.3 °C/s (to 800 °C), (b) 80.5 °C/s (to 900 °C), (c) 124.8 °C/s (to 1000 °C); OIM (10° tolerance) of grains at (d) 60.3 °C/s (to 800 °C), (e) 80.5 °C/s (to 900 °C), (f) 124.8 °C/s (to 1000 °C) rapid heating samples.
Fig. 15. φ2=45° ODF section of annealed sample at (a) 60.3 °C/s (to 800 °C), (b) 80.5 °C/s (to 900 °C), (c) 124.8 °C/s (to 1000 °C); the volume fraction diagram of recrystallized grains at (d) 60.3 °C/s (to 800 °C), (e) 80.5 °C/s (to 900 °C), (f) 124.8 °C/s (to 1000 °C) rapid heating samples.
Fig. 16. Effect of annealing temperature on ODF intensities of the cube and Goss texture components shown in φ2=45° ODF section: (a, b) pulsed samples, (c, d) annealed samples, (e, f) rapid heating samples.
Temperature ( °C) | Recrystallization texture | Euler angle (°) | Angle (°) | ||
---|---|---|---|---|---|
Miller indices | φ1 | ϕ | φ2 | <T, cube> | |
750 | (114) [1 -13 3] | 42.28 | 19.47 | 45 | 19.66 |
800 | (001) [1 -5 0] | 78.69 | 0 | 0 | 11.31 |
900 | (113) [1 -7 2] | 39.66 | 25.24 | 45 | 25.79 |
1000 | (114) [0 -4 1] | 46.69 | 19.47 | 45 | 19.54 |
AVG | 19.08 | ||||
SD | 5.15 |
Table 1 The calculated angle between the recrystallization texture and cube orientation in the pulsed sample.
Temperature ( °C) | Recrystallization texture | Euler angle (°) | Angle (°) | ||
---|---|---|---|---|---|
Miller indices | φ1 | ϕ | φ2 | <T, cube> | |
750 | (114) [1 -13 3] | 42.28 | 19.47 | 45 | 19.66 |
800 | (001) [1 -5 0] | 78.69 | 0 | 0 | 11.31 |
900 | (113) [1 -7 2] | 39.66 | 25.24 | 45 | 25.79 |
1000 | (114) [0 -4 1] | 46.69 | 19.47 | 45 | 19.54 |
AVG | 19.08 | ||||
SD | 5.15 |
Temperature ( °C) | Recrystallization texture | Euler angle (°) | Angle (°) | ||
---|---|---|---|---|---|
Miller indices | φ1 | ϕ | φ2 | <T, cube> | |
750 | (114) [2 -6 1] | 27.94 | 19.47 | 45 | 25.83 |
800 | (113) [0 -3 1] | 47.87 | 25.24 | 45 | 25.40 |
900 | (117) [4 -11 1] | 25.46 | 11.42 | 45 | 31.82 |
1000 | (115) [2 -7 0] | 30 | 15.79 | 45 | 21.75 |
1030 | (115) [4 -9 1] | 21.79 | 15.79 | 45 | 28.01 |
1060 | (001) [1 -4 0] | 75.96 | 0 | 0 | 14.04 |
1100 | (110) [0 0 1] | 90 | 90 | 45 | 45 |
AVG | 27.41 | ||||
SD | 8.84 |
Table 2 The calculated angle between the recrystallization texture and cube orientation in the annealed sample.
Temperature ( °C) | Recrystallization texture | Euler angle (°) | Angle (°) | ||
---|---|---|---|---|---|
Miller indices | φ1 | ϕ | φ2 | <T, cube> | |
750 | (114) [2 -6 1] | 27.94 | 19.47 | 45 | 25.83 |
800 | (113) [0 -3 1] | 47.87 | 25.24 | 45 | 25.40 |
900 | (117) [4 -11 1] | 25.46 | 11.42 | 45 | 31.82 |
1000 | (115) [2 -7 0] | 30 | 15.79 | 45 | 21.75 |
1030 | (115) [4 -9 1] | 21.79 | 15.79 | 45 | 28.01 |
1060 | (001) [1 -4 0] | 75.96 | 0 | 0 | 14.04 |
1100 | (110) [0 0 1] | 90 | 90 | 45 | 45 |
AVG | 27.41 | ||||
SD | 8.84 |
Fig. 17. Recrystallized grain size of pulsed sample, annealed samples and rapid heating samples after annealing at various temperatures. The error bars represent the standard deviations in the grain size distributions.
Fig. 18. (a?c) Schematic illustrating the grain boundary migration model and (d) Gibbs free energy change of atoms jumping across grain boundaries. (e) A simple rotational mechanism of grains under pulsed electric current.
[1] | G. Lyudkovsky, P.K. Rastogi, M. Bala, JOM 38 (1986) 18-26. |
[2] | T. Haratani, W.B. Hutchinson, I.L. Dillamore, P. Bate, Met. Sci. 18 (1984) 57-66. |
[3] |
L. Cheng, N. Zhang, P. Yang, W.M. Mao, Scr. Mater. 67 (2012) 899-902.
DOI URL |
[4] |
F. Fang, Y.X. Zhang, X. Lu, Y. Wang, M.F. Lan, G. Yuan, R.D.K. Misra, G.D. Wang, Scr. Mater. 147 (2018) 33-36.
DOI URL |
[5] | L. Kestens, S. Jacobs, Texture, Stress, Microstruct. 173083 (2008) 1-9. |
[6] | F. Assmus, R. Boll, D. Ganz, F. Pfeifer, Z. Metallkd. 48 (1957) 341-343. |
[7] |
J.L. Walter, C.G. Dunn, Acta Metall 8 (1960) 497-503.
DOI URL |
[8] |
T. Tomida, J. Mater. Eng. Perform. 5 (1996) 316-322.
DOI URL |
[9] |
H.T. Jiao, Y.B. Xu, L.Z. Zhao, R.D.K. Misra, Y.C. Tang, D.J. Liu, Y. Hu, M.J. Zhao, M.X. Shen, Acta Mater 199 (2020) 311-325.
DOI URL |
[10] |
M. Mehdi, Y.L. He, E.J. Hilinski, A. Edrisy, J. Magn. Magn. Mater. 429 (2017) 148-160.
DOI URL |
[11] |
B.Y. Huang, K. Yamamoto, C. Kaido, Y. Yamashiro, J. Magn. Magn. Mater. 209 (2000) 197-200.
DOI URL |
[12] |
M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy, Acta Mater 185 (2020) 540-554.
DOI URL |
[13] |
K.M. Kim, H.K. Kim, J.Y. Park, J.S. Lee, S.G. Kim, N.J. Kim, B.J. Lee, Acta Mater 106 (2016) 106-116.
DOI URL |
[14] |
Y. Hayakawa, M. Kurosawa, Acta Mater 50 (2002) 4527-4534.
DOI URL |
[15] |
Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, L. Zuo, Acta Mater 76 (2014) 106-117.
DOI URL |
[16] |
H.T. Liu, Z.Y. Liu, Y. Sun, Y.Q. Qiu, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, G.D. Wang, Mater. Lett. 81 (2012) 65-68.
DOI URL |
[17] |
J.-.T. Park, J.A. Szpunar, Acta Mater 51 (2003) 3037-3051.
DOI URL |
[18] |
J.L. Walter, E.F. Koch, Acta Metall. 11 (1963) 923-937.
DOI URL |
[19] |
Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, Z.Y. Liu, G.D. Wang, Scr. Mater. 87 (2014) 17-20.
DOI URL |
[20] |
R.Y. Liang, P. Yang, W.M. Mao, J. Magn. Magn. Mater. 441 (2017) 511-516.
DOI URL |
[21] |
X.B. Liu, W.J. Lu, X.F. Zhang, Acta Mater 183 (2020) 51-63.
DOI URL |
[22] |
S.Y. Qin, X. Ba, X.F. Zhang, Scr. Mater. 178 (2014) 24-28.
DOI URL |
[23] |
X.L. Wang, J.D. Guo, Y.M. Wang, X.Y. Wu, B.Q. Wang, Appl. Phys. Lett. 89 (2006) 061910.
DOI URL |
[24] |
Y.B. Jiang, G.Y. Tang, C.H. Shek, Y.H. Zhu, Z.H. Xu, Acta Mater 57 (2009) 4797-4808.
DOI URL |
[25] | R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, B. Elliott-Bowman, Mater. Sci. Technol. 9 (2014) 1040-1044. |
[26] | M.L. Shen, S.L. Zhu, F.H. Wang, Nat. Commun. 7 (2016) 1-6. |
[27] |
R. Ma, S.Q. Xiang, X.F. Zhang, Int. J. Hydrog. Energy 45 (2020) 16909-16917.
DOI URL |
[28] |
H.X. Zhang, X.F. Zhang, J. Mater. Sci. Technol. 36 (2020) 149-159.
DOI URL |
[29] |
J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, Z.A. Munir, Appl. Phys. Lett. 85 (2004) 573.
DOI URL |
[30] |
C. Basaran, M.H. Lin, Mech. Mater. 40 (2008) 66-79.
DOI URL |
[31] |
Z. Islam, B.M. Wang, A. Haque, Scr. Mater. 144 (2018) 18-21.
DOI URL |
[32] |
C.L. Liang, K.L. Lin, Mater. Charact. 145 (2018) 545-555.
DOI URL |
[33] |
H. Conrad, N. Karam, S. Mannan, A.F. Sprecher, Scr. Metall. 22 (1988) 235-238.
DOI URL |
[34] |
K. Okazaki, M. Kagawa, H. Conrad, Scr. Metall. 12 (1978) 1063-1068.
DOI URL |
[35] |
J.Y. Feng, C.J. Hang, Y.H. Tian, C.X. Wang, B.L. Liu, J. Alloy. Compd. 753 (2018) 203-211.
DOI URL |
[36] |
S.H. Deng, R.D. Li, T.C. Yuan, P. Yang, S.Y. Xie, J.N. Li, Appl. Phys. Lett. 117 (2020) 194102.
DOI URL |
[37] |
G.L. Hu, G.Y. Tang, Y.H. Zhu, C. Shek, Metall. Mater. Trans. A 42 (2011) 3484.
DOI URL |
[38] |
S.H. Xiao, J.D. Guo, S.D. Wu, G.H. He, S.X. Li, Scr. Mater. 46 (2002) 1-6.
DOI URL |
[39] |
Y.Z. Zhou, S.H. Xiao, J.D. Guo, Mater. Lett. 58 (2004) 1948-1951.
DOI URL |
[40] |
X.P. Li, X.H. Li, J. Zhu, X.X. Ye, G.Y. Tang, Scr. Mater. 112 (2016) 23-27.
DOI URL |
[41] |
M.C. Zhou, X.F. Zhang, J. Mater. Sci. Technol. 38 (2020) 1-6.
DOI URL |
[42] |
G.L. Hu, Y.H. Zhu, C. Shek, G.Y. Tang, J. Mater. Res. 26 (2011) 917-922.
DOI URL |
[43] |
G.L. Hu, C.H. Shek, Y.H. Zhu, G.Y. Tang, X. Qing, Mater. Trans. 51 (2010) 1390-1394.
DOI URL |
[44] |
M.C. Zhou, X. Ba, X.F. Zhang, Metall. Mater. Trans. A 51 (2011) 1481-1486.
DOI URL |
[45] |
P. Asoka-Kumar, K. O’Brien, K.G. Lynn, P.J. Simpson, K.P. Rodbell, Appl. Phys. Lett. 68 (1996) 406-408.
DOI URL |
[46] |
M.D. Thouless, Scr. Mater. 34 (1996) 1825-1831.
DOI URL |
[47] |
D. Dorner, S. Zaefferer, D. Raabe, Acta Mater 55 (2007) 2519-2530.
DOI URL |
[48] |
S.H. Choi, Y.S. Jin, Mater. Sci. Eng. A 371 (2004) 149-159.
DOI URL |
[49] |
P.J. Hurley, F.J. Humphreys, Acta Mater. 51 (2003) 1087-1102.
DOI URL |
[50] |
O. Engler, Acta Mater. 46 (1998) 1555-1568.
DOI URL |
[51] |
N.J. Park, E.J. Lee, H.D. Joo, J.T. Park, ISIJ Int. 51 (2011) 975-981.
DOI URL |
[52] |
N.J. Park, H.D. Joo, J.T. Park, ISIJ Int. 53 (2013) 125-130.
DOI URL |
[53] | R.Y. Liang, P. Yang, W.M. Mao, Acta Metall. Sin.(Engl. Lett. 30 (2017) 895-906. |
[54] |
S. Takajo, C.C. Merriman, S.C. Vogel, D.P. Field, Acta Mater 166 (2019) 100-112.
DOI URL |
[55] |
J. Liu, W. Liu, G. Tang, R. Zhu, J. Mater. Res. 29 (2014) 596-603.
DOI URL |
[56] |
Y. Liu, J.F. Fan, H. Zhang, W. Jin, H.B. Dong, B.S. Xu, J. Alloy. Compd. 622 (2015) 229-235.
DOI URL |
[57] | R.S. Qin, B.L. Zhou, Chin. J. Mater. Res. 11 (1997) 69-72. |
[58] |
M. Atkinson, Mater. Sci. Eng. A 262 (1999) 33-38.
DOI URL |
[59] |
D. Muljono, M. Ferry, D.P. Dunne, Mater. Sci. Eng. A 303 (2001) 90-99.
DOI URL |
[60] |
S. Primig, H. Leitner, W. Knabl, A. Lorich, H. Clemens, R. Stickler, Mater. Sci. Eng. A 535 (2012) 316-324.
DOI URL |
[61] |
S.T. Zhao, R.P. Zhang, Y. Chong, X.Q. Li, A. Abu-Odeh, E. Rothchild, D.C. Chrzan, M. Asta, J.W. Morris Jr., A.M. Minor, Nat. Mater. 20 (2020) 468-472.
DOI URL |
[62] |
J.W. Cahn, Y. Mishin, A. Suzuki, Acta Mater 54 (2006) 4953-4975.
DOI URL |
[63] |
A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan, H. Gleiter, Mater. Sci. Eng. A 318 (2001) 293-312.
DOI URL |
[64] |
K.E. Harris, V.V. Singh, A.H. King, Acta Mater 46 (1998) 2623-2633.
DOI URL |
[65] |
J.R. Lloyd, J. Phys. D: Appl. Phys. 32 (1999) R109.
DOI URL |
[66] |
R.S. Qin, Mater. Sci. Technol. 31 (2015) 203-206.
DOI URL |
[67] |
A. Rahnama, R.S. Qin, Sci. Rep. 7 (2017) 42732.
DOI URL |
[68] |
D. Waryoba, Z. Islam, B.M. Wang, A. Haque, J. Alloy. Compd. 820 (2020) 153409.
DOI URL |
[69] |
W.B. Dai, X.L. Wang, H.M. Zhao, X. Zhao, Mater. Trans. 53 (2012) 229-233.
DOI URL |
[70] |
J.D. Guo, X.L. Wang, W.B. Dai, Mater. Sci. Technol. 31 (2015) 1545-1554.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[3] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[4] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[5] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[6] | Shengkun Wang, Gang Jin, Yuntao Wu, Xiao Liu, Gang Chen. Study on deformation mechanism of Ti-2Al-2.5Zr alloy tube in the flattening test [J]. J. Mater. Sci. Technol., 2021, 90(0): 108-120. |
[7] | Z.Y. Zhao, R.G. Guan, Y.F. Shen, P.K. Bai. Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling [J]. J. Mater. Sci. Technol., 2021, 91(0): 251-261. |
[8] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[9] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[10] | Peng-Cheng Zhao, Guang-Jian Yuan, Run-Zi Wang, Bo Guan, Yun-Fei Jia, Xian-Cheng Zhang, Shan-Tung Tu. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF [J]. J. Mater. Sci. Technol., 2021, 83(0): 196-207. |
[11] | Shiyang Liu, Damon Kent, Hongyi Zhan, Nghiem Doan, Chang Wang, Sen Yu, Matthew Dargusch, Gui Wang. Influence of strain rate and crystallographic orientation on dynamic recrystallization of pure Zn during room-temperature compression [J]. J. Mater. Sci. Technol., 2021, 86(0): 237-250. |
[12] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[13] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[14] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[15] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||