J. Mater. Sci. Technol. ›› 2021, Vol. 93: 71-78.DOI: 10.1016/j.jmst.2021.04.006
• Original article • Previous Articles Next Articles
Guan Liu, Dong Du, Kaiming Wang, Ze Pu, Dongqi Zhang, Baohua Chang()
Received:
2021-01-29
Revised:
2021-03-22
Accepted:
2021-04-02
Published:
2021-12-10
Online:
2021-12-10
Contact:
Baohua Chang
About author:
E-mail address: bhchang@tsinghua.edu.cn (B. Chang).Guan Liu, Dong Du, Kaiming Wang, Ze Pu, Dongqi Zhang, Baohua Chang. Microstructure and wear behavior of IC10 directionally solidified superalloy repaired by directed energy deposition[J]. J. Mater. Sci. Technol., 2021, 93: 71-78.
Co | Cr | Mo | W | Al | Ta | Hf | C | B | Ni |
---|---|---|---|---|---|---|---|---|---|
12.0 | 7.0 | 1.5 | 5.0 | 5.9 | 7.0 | 1.5 | 0.1 | 0.015 | Bal. |
Table 1. Chemical compositions of the studied IC10 alloy (wt.%).
Co | Cr | Mo | W | Al | Ta | Hf | C | B | Ni |
---|---|---|---|---|---|---|---|---|---|
12.0 | 7.0 | 1.5 | 5.0 | 5.9 | 7.0 | 1.5 | 0.1 | 0.015 | Bal. |
Parameters | Values |
---|---|
Scanning speed (mm/s) | 6 |
Powder feeding rate (g/min) | 8.9 |
Laser spot diameter (mm) | 2 |
Focal length (mm) | +32 |
Table 2. Laser processing parameters.
Parameters | Values |
---|---|
Scanning speed (mm/s) | 6 |
Powder feeding rate (g/min) | 8.9 |
Laser spot diameter (mm) | 2 |
Focal length (mm) | +32 |
Fig. 2. (a) Optical micrograph [31] and (b) EBSD orientation map of the microstructure in the cross-section of repaired alloy; (c-e) PF (pole figure) maps taken from the zone C, D, and E, respectively.
Fig. 3. TEM micrograph of γ΄ phase at (a) the substrate, (b) heat-affected zone, (c) bottom zone, (d) middle zone, (e) top zone of the repaired IC10 alloy, (f) schematic diagram of zones.
Fig. 5. SEM images of the carbides at the substrate (a), joint zone (b), bottom zone (c), middle zone (d), and top zone (e) of the repaired IC10 alloy.
Fig. 6. Three-dimensional (3D) wear track surface profiles of repaired alloy after sliding wear in different zones: (a) substrate; (b) heat-affected zone; (c) bottom zone; (d) middle zone; (e) top zone of deposition layers; (f) the interpretation of X and Y-axis. It is noted that SD and BD refer to the scanning direction and building direction, respectively.
Fig. 8. Morphology of the sample surface after dry sliding wear: (a) substrate; (b) heat-affected zone; (c) bottom zone; (d) middle zone; (e) top zone of deposition layers; (f) enlarged figure of debris.
[1] | H.W. Zhang, Y.S. Wu, X.Z. Qin, L.Z. Zhou, X.W. Li, J. Alloys Compd.(2018), pp. 915-923. |
[2] | W.J.L.Y. Guowei, J. Mater. Sci. Technol., 5(2017), pp. 499-506. |
[3] | P. Zhang, X. Zhou, X. Wang, Y. Lu, X. Cheng, W. Zhang, J. Alloys Compd.(2020), Article 154474. |
[4] | S. Shrestha, R.P. Panakarajupally, M. Kannan, G. Morscher, A.L. Gyekenyesi, O.E. Scott-Emuakpor, Mater. Sci. Eng.(2020), Article 140604. |
[5] | S. Sui, J. Chen, R. Zhang, X. Ming, F. Liu, X. Lin, Mater. Sci. Eng. A Struct. Mater.(2017), pp. 480-487. |
[6] | Z. Xia, J. Xu, J. Shi, T. Shi, C. Sun, D. Qiu, Additive Manuf.(2020), Article 101114. |
[7] | H.L. Wei, F.Q. Liu, W.H. Liao, T.T. Liu, Additive Manuf.(2020), Article 101219. |
[8] | D. Wen, P. Long, J. Li, L. Huang, Z. Zheng, Vacuum(2020), Article 109131. |
[9] | A. Basak, S. Das, J. Alloys Compd.(2017), pp. 806-816. |
[10] | S. Sui, C. Zhong, J. Chen, A. Gasser, W. Huang, J.H. Schleifenbaum, J. Alloys Compd.(2018), pp. 389-399. |
[11] | P.D. Enrique, A. Keshavarzkermani, R. Esmaeilizadeh, S. Peterkin, H. Jahed, E. Toyserkani, N.Y. Zhou, Additive Manuf.(2020), Article 101526. |
[12] | J. Liang, Y. Liu, J. Li, Y. Zhou, X. Sun, J. Mater. Sci. Technol., 2(2019), pp. 344-350. |
[13] | G. Wang, J. Liang, Y. Zhou, L. Zhao, T. Jin, X. Sun, J. Mater. Sci. Technol., 4(2018), pp. 732-735. |
[14] | Z. Zhang, Y. Zhao, Y. Chen, Z. Su, J. Shan, A. Wu, Y.S. Sato, et al., Mater. Design.(2021), Article 109346. |
[15] | Z. Zhang, Y. Zhao, J. Shan, A. Wu, H. Gu, X. Tang, J. Alloys Compd.(2019), pp. 703-715. |
[16] | G.A. Ravi, C. Qiu, M.M. Attallah, Mater. Lett.(2016), pp. 104-108. |
[17] | H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Prog. Mater. Sci.(2020), Article 100703. |
[18] | Z. Zhang, Y. Zhao, J. Shan, A. Wu, Y.S. Sato, S. Tokita, K. Kadoi, et al., J. Alloys Compd.(2021). |
[19] | J.L. Lu, X. Lin, H.L. Liao, N. Kang, W.D. Huang, C. Coddet, Opt. Laser Technol.(2020), Article 106277. |
[20] | E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J. Blandin, et al., Acta Mater(2018), pp. 82-94. |
[21] | S. Ci, J. Liang, J. Li, Y. Zhou, X. Sun, J. Mater. Sci. Technol.(2020), pp. 23-34. |
[22] | H. Song, J. Lei, J. Xie, S. Wu, L. Wang, W. Shou, J. Alloys Compd.(2019), pp. 551-564. |
[23] | G. Deng, A.K. Tieu, L. Su, P. Wang, L. Wang, X. Lan, S. Cui, et al., Wear(2020), Article 203440. |
[24] | I. Campos-Silva, A.D. Contla-Pacheco, U. Figueroa-López, J. Martínez-Trinidad, A. Garduño-Alva, M. Ortega-Avilés, Surf. Coat. Technol.(2019), Article 124862. |
[25] | Q. Miao, W. Ding, W. Kuang, J. Xu, Tribol. Int.(2020), Article 106144. |
[26] | J. Cheng, M. Mao, X. Gan, Q. Lei, Z. Li, K. Zhou, Friction(2020) |
[27] | J.T. Philip, J. Mathew, B. Kuriachen, Friction, 6. (2019), pp. 497-536., |
[28] | G. Liu, D. Du, K. Wang, Z. Pu, B. Chang, J. Alloys Compd.(2021). |
[29] | G. Liu, D. Du, K. Wang, Z. Pu, B. Chang, Vacuum(2020), Article 109563. |
[30] | L. Wang, N. Wang, Acta Mater(2016), pp. 250-258. |
[31] | G. Liu, D. Du, K. Wang, Z. Pu, D. Zhang, B. Chang, Mater. Sci. Eng. A Struct. Mater.(2021), Article 140911. |
[32] | K. Wang, D. Du, G. Liu, Z. Pu, B. Chang, J. Ju, Mater. Sci. Eng. A Struct. Mater.(2020), Article 139185. |
[33] | C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, G. Eggeler, Metall. Mater. Trans. A, 9(2018), pp. 3781-3792. |
[34] | W. Li, L. Li, S. Antonov, Q. Feng, Mater. Design(2019), Article 107912. |
[35] | J. Chen, Q. Huo, J. Chen, Y. Wu, Q. Li, C. Xiao, X. Hui, Mater. Sci. Eng. A Struct. Mater.(2021), Article 140163. |
[36] | M.A. Ali, I. López-Galilea, S. Gao, B. Ruttert, W. Amin, O. Shchyglo, A. Hartmaier, et al., Materialia(2020), Article 100692. |
[37] | X. Liu, R. Yu, J. Alloys Compd., 1-2(2007), pp. 279-286. |
[38] | H. Zhang, W. Wen, H. Cui, Y. Xu, Mater. Sci. Eng. A Struct. Mater., 1(2009), pp. 328-333. |
[39] | Y. Yang, X. Li, M.M. Khonsari, Y. Zhu, H. Yang, Additive Manuf.(2020), Article 101583. |
[1] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[2] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[3] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[4] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[5] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[6] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[7] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
[8] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[9] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[10] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[11] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[12] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[13] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[14] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[15] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||