J. Mater. Sci. Technol. ›› 2021, Vol. 93: 79-88.DOI: 10.1016/j.jmst.2021.03.055
• Original article • Previous Articles Next Articles
Yixuan Hea,b,*(), Yuhao Wua,b, Fan Bu a, Chengxiong Zou a, Zhangchi Bian a, Qiliang Huang a, Tie Liu c, Qiang Wang c, Jun Wang a, Jinshan Lia,*(
), Eric Beaugnon d,*(
)
Accepted:
2021-02-19
Published:
2021-12-10
Online:
2021-12-10
Contact:
Yixuan He,Jinshan Li,Eric Beaugnon
About author:
eric.beaugnon@lncmi.cnrs.fr (E. Beaugnon).Yixuan He, Yuhao Wu, Fan Bu, Chengxiong Zou, Zhangchi Bian, Qiliang Huang, Tie Liu, Qiang Wang, Jun Wang, Jinshan Li, Eric Beaugnon. Effects of an ultra-high magnetic field up to 25 T on the phase transformations of undercooled Co-B eutectic alloy[J]. J. Mater. Sci. Technol., 2021, 93: 79-88.
Fig. 1. (a) Cooling history and magnetic field training process of the sample solidified using the fluxing combined with the thermal cycling method. A static magnetic field of 25 T was applied during the cooling process and the subsequent thermal processing of the 11th cycle. The dashed line shows the eutectic temperature, TE. (b) The enlarged figure of the dashed square in Fig. 1(a), indicating a solid-state phase transformation at Ts=1193 K. (c) The corresponding macrograph of the sample after solidification. (d) The DSC curve of the thin slice cut from the sample shown in Fig. 1(c) with a heating rate of 10 K min-1.
Fig. 2. Field dependence of magnetization at room temperature of the sample after solidification. //B and ⊥B indicate directions of the magnetic field imposed for the magnetization measurement with respect to the magnetic field imposed during the solidification. Inset shows the magnified curves around zero magnetic field.
Fig. 3. Microstructures on the polished surface of the sample shown in Fig. 1(c), (a) The longitudinal (parallel to the direction of magnetic field) and (b) the transverse (perpendicular to the direction of magnetic field) structures. (c-e) Higher magnification images of the square regions in Fig. 3(a). (c1-e1) The corresponding close-up views of the dashed squares in Fig. 3(c)-3(e), respectively. The small green rectangle in (d1) indicates the location for preparing in-depth PED and TEM lamella by FIB.
Fig. 4. EBSD analysis of the microstructure shown in Fig. 3(c). (a) Phase map and (b) the corresponding inverse pole figure map. (c) Phase map and (d) inverse pole figure map of the boxed region in Fig. 4(a) and 4(b), performed at a smaller step size. The color bars are shown on the right hand side. The small red rectangle in Fig. 4(c) indicates the location for preparing in-depth TEM lamella by FIB. (e) Orientations of Fcc-Co and the associated Hcp-Co in the granular primary phase plotted onto the pole figures, indicating an obedience of Blackburn orientation relationship. (f) Orientations of Fcc-Co and the associated Co2B in the granular primary phase plotted onto the pole figures, revealing the orientation relationship between them. The purple cross represents the direction of magnetic field.
Fig. 5. TEM analysis of a FIB lift-out lamella prepared from the location in Fig. 4(c). (a) STEM bright-field image. (b-d) SAD patterns taken from the regions indicated by circles in Fig. 5(a). The indices in the bottom right corner indicate the corresponding zone axes. The inserts in the top right corner of Fig. 5(b)-5(d) are the SAD patterns viewing along other zone axes.
Fig. 6. PED analysis of a FIB lift-out lamella prepared from the location in Fig. 3(d1). (a) STEM bright-field image. (b, d) Phase map and (c, e) the corresponding inverse pole figure map of the boxed region in Fig. 6(a). The color bars of Fig. 6(b)-6(e) are shown in the bottom right corner.
Fig. 7. Further TEM characterization of the microstructure shown in Fig. 6(a). (a) Magnified BF-STEM image of the blue boxed region in Fig. 6(a). (b) Magnified HAADF-STEM image of the orange boxed region in Fig. 6(a). (c-h) SAD patterns taken from the regions indicated by circles in Fig. 7(a) and 7(b). The indices in the bottom right corner indicate the corresponding zone axes.
Fig. 9. Ball-and-stick representations of Co23B6 unit cell (a), Fcc-Co unit cell (b) and Co3B unit cell (c). 3D (a1) and (100) views (a2) of coordination polyhedral in the Co23B6 phase.
[1] | S. Zhou, R. Hu, J. Li, H. Chang, H. Kou, L. Zhou, Appl. Phys. Lett., 102 (2)(2013), Article 022403. |
[2] | X. Qiu, J. Li, J. Wang, T. Guo, H. Kou, E. Beaugnon, Mater. Chem. Phys., 170(2016), pp. 261-265. |
[3] | Y. Xiao, T. Liu, Y. Tong, M. Dong, J. Li, J. Wang, Q. Wang, J. Mater. Sci. Technol., 76(2021), pp. 51-59. |
[4] | H. Dong, Y.Z. Chen, Z.R. Zhang, G.B. Shan, W.X. Zhang, F. Liu, J. Mater. Sci. Technol., 59(2020), pp. 173-179. |
[5] | D.M. Herlach, J. Phys.-Condes. Matter, 13 (34) (2001), p.7737. |
[6] | M. Schwarz, A. Karma, K. Eckler, D.M. Herlach, Phys. Rev. Lett., 73 (10)(1994), pp. 1380-1383. |
[7] | Z.C. Luo, H.P. Wang, J. Mater. Sci. Technol., 40(2020), pp. 47-53. |
[8] | M. Krivilyov, T. Volkmann, J. Gao, J. Fransaer, Acta Mater, 60 (1)(2012), pp. 112-122. |
[9] | M. Gäumann, R. Trivedi, W. Kurz, Mater. Sci. Eng. A, 226(1997), pp. 763-769. |
[10] | Y. He, J. Li, J. Wang, H. Kou, E. Beaugnon, Appl. Phys. A-Mater. Sci. Process., 123 (6) (2017), p.391. |
[11] | B. Dang, Z. Jian, J. Xu, Sci Rep 10(1)(2020) 18230. |
[12] | P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang, J. Mater. Sci. Technol., 77(2021), pp. 82-89. |
[13] | J. Zhang, J. Liu, H. Liao, M. Zeng, S. Ma, J. Mater. Res. Technol., 8 (6)(2019), pp. 6308-6320. |
[14] | H. Ahmadian Baghbaderani, A. Masood, Z. Pavlovic, N. Teichert, C. ó. Mathúna, P. McCloskey, P. Stamenov, J. Magn. Magn. Mater., 503(2020), Article 166630. |
[15] | L. Lai, R. He, K. Ding, T. Liu, R. Liu, Y. Chen, S. Guo, J. Non-Cryst. Solids, 524(2019), Article 119657. |
[16] | P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, M. Widom, Phys. Rev. B, 78 (14)(2008), Article 144414. |
[17] | D. Kotzott, M. Ade, H. Hillebrecht, J. Solid State Chem., 182 (3)(2009), pp. 538-546. |
[18] | D.G. Quirinale, G.E. Rustan, A. Kreyssig, A.I. Goldman, Appl. Phys. Lett., 106 (24)(2015), Article 241906. |
[19] | T. Liu, Y. Liu, Q. Wang, Y. Wang, K. Wang, J.C. He, Adv. Mater. Res., 421(2011), pp. 792-795. |
[20] | J. Wang, Y. He, J. Li, C. Li, H. Kou, P. Zhang, E. Beaugnon, Mater. Chem. Phys., 225(2019), pp. 133-136. |
[21] | T. Odaira, X. Xu, A. Miyake, T. Omori, M. Tokunaga, R. Kainuma, Scr. Mater., 153(2018), pp. 35-39. |
[22] | Y. He, J. Li, L. Li, J. Wang, E. Yildiz, E. Beaugnon, J. Alloy. Compd., 815(2020), Article 152446. |
[23] | J. Wang, J. Li, R. Hu, H. Kou, E. Beaugnon, Appl. Phys. Lett., 105 (14)(2014), Article 144101. |
[24] | J. Wang, S. Yue, Y. Fautrelle, P.D. Lee, X. Li, Y. Zhong, Z. Ren, Sci Rep, 6 (2016), p.24585. |
[25] | X. Li, X. Bao, X. Yu, X. Gao, Scr. Mater., 147(2018), pp. 64-68. |
[26] | T. Liu, Q. Wang, A. Gao, C. Zhang, C. Wang, J. He, Scr. Mater., 57 (11)(2007), pp. 992-995. |
[27] | T. Liu, Y. Xiao, Z. Lu, N. Hirota, G. Li, S. Yuan, Q. Wang, J. Mater. Sci. Technol., 41(2020), pp. 187-190. |
[28] | H. Okamoto, J. Phase Equilib., 24 (4) (2003), p.376-376. |
[29] | X.X. Wei, W. Xu, J.L. Kang, M. Ferry, J.F. Li, J. Mater. Sci., 51 (13)(2016), pp. 6436-6443. |
[30] | M. Yu, L. Liu, Q. Wang, L. Jia, B. Hou, Y. Si, D. Li, Y. Zhao, Int. J. Hydrog. Energy, 43 (11)(2018), pp. 5576-5590. |
[31] | X.X. Wei, W. Xu, J.L. Kang, M. Ferry, J.F. Li, J. Mater. Sci. Technol., 33 (4)(2017), pp. 352-358. |
[32] | Y. He, J. Li, J. Wang, E. Beaugnon, J. Cryst. Growth, 499(2018), pp. 98-105. |
[33] | Y. He, J. Li, J. Wang, E. Yildiz, S. Pairis, E. Beaugnon, Mater. Lett., 234(2019), pp. 351-353. |
[34] | J.W. Christian, The Theory of Transformations in Metals and Alloys Part I, Newnes(2002). |
[35] | J. Wang, Y. He, J. Li, H. Kou, E. Beaugnon, Sci Rep, 7 (1) (2017), p.4958. |
[36] | Z.H.I. Sun, X. Guo, M. Guo, C. Li, J. Vleugels, Z. Ren, O. Van der Biest, B. Blanpain, J. Phys. Chem. C, 116 (33)(2012), pp. 17676-17681. |
[37] | T. Shinohara, H. Watanabe, J. Phys. Soc. Jpn., 20 (11) (1965), pp. 2020-2027. |
[38] | C. Huang, S. Shuai, P. Wang, X. Liu, J. Wang, Z. Ren, Scr. Mater., 187(2020), pp. 232-236. |
[39] | J. Wang, Y. Fautrelle, Z. Ren, H. Nguyen-Thi, G. Salloum Abou Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li, I. Kaldre, Appl. Phys. Lett., 104 (12)(2014), Article 121916. |
[40] | T. Liu, Q. Wang, H.-.W. Zhang, C.-.S. Lou, K. Nakajima, J.-.C. He, J. Mater. Sci., 46 (6)(2010), pp. 1628-1634. |
[41] | F.W. Herbert, A. Krishnamoorthy, L. Rands, K.J. Van Vliet, B. Yildiz, Phys. Chem. Chem. Phys., 17 (16)(2015), pp. 11036-11041 |
[42] | V.G. de Paula, C.D. Pomar, A.C.M. Padilha, J.A. Souza, Solid State Ion, 339(2019), Article 115000. |
[43] | S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida, A. Chiba, J. Mater. Sci., 40 (12)(2005), pp. 3191-3198. |
[1] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
[2] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
[3] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
[4] | Chaoqiang Liu, Houwen Chen, Min Song, Jian-Feng Nie. Electron beam irradiation induced metastable phase in a Mg-9.8 wt%Sn alloy [J]. J. Mater. Sci. Technol., 2021, 84(0): 133-138. |
[5] | Wei X.X., Xu W., Kang J.L., Ferry M., Li J.F.. Phase Selection in Solidification of Undercooled Co-B Alloys [J]. J. Mater. Sci. Technol., 2017, 33(4): 352-358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||