J. Mater. Sci. Technol. ›› 2021, Vol. 91: 178-186.DOI: 10.1016/j.jmst.2021.02.044
• Research Article • Previous Articles Next Articles
Jiayi Zhang, Yan Jin Lee, Hao Wang*()
Received:
2020-12-28
Revised:
2021-02-23
Accepted:
2021-02-23
Published:
2021-11-20
Online:
2021-11-20
Contact:
Hao Wang
About author:
*E-mail address: mpewhao@nus.edu.sg (H. Wang).Jiayi Zhang, Yan Jin Lee, Hao Wang. Microstructure evaluation of shear bands of microcutting chips in AA6061 alloy under the mechanochemical effect[J]. J. Mater. Sci. Technol., 2021, 91: 178-186.
Fig. 1. (a) Experimental setup (Fc and Ft are the cutting and thrust forces, respectively), (b) the tested cutting and thrust forces of the two chips during microcutting (Chip A: without mechanochemical effect; Chip B: with mechanochemical effect), and the SEM microstructures of (c) Chip A and (d) Chip B (the insert images are side view of chips after ion thinning).
Fig. 2. EBSD orientation distribution color maps of (a) Chip A and (b) Chip B (the yellow wireframe representing the chips region), the inverse pole figure is inserted: red for {001}, blue for {111}, and green for {101} direction. The ODF maps of the chips: (c) Chip A and (d) Chip B.
Chip | Volume fraction (%) | |||||
---|---|---|---|---|---|---|
{100}<001> | {110}<112> | {110}<001> | {100}<110> | {112}<111> | Un-recognisable | |
A | 31.7 | 33.1 | 1.7 | 2.4 | 5.2 | 25.9 |
B | 2.8 | 4.3 | 40.9 | 26.7 | 4.1 | 21.2 |
Table 1 Volume fractions of grain orientations in the chips.
Chip | Volume fraction (%) | |||||
---|---|---|---|---|---|---|
{100}<001> | {110}<112> | {110}<001> | {100}<110> | {112}<111> | Un-recognisable | |
A | 31.7 | 33.1 | 1.7 | 2.4 | 5.2 | 25.9 |
B | 2.8 | 4.3 | 40.9 | 26.7 | 4.1 | 21.2 |
Fig. 3. The TEM observations for shear bands on the chips: (a) the local microstructure of Chip A, (b) the amplified bright field image of red dotted line frame of (a), (c) the weak beam dark field image of (b) and (d) the selected subgrain inside shear band of (c).
Fig. 4. The TEM observations for shear bands on the chips: (a) the local microstructure of Chip B, (b) the amplified bright field image of red dotted line frame of (a), (c) the local amplified bright field image of (b) and (d) the weak beam dark field image of (c).
δD0 | γ | Q | k | R | T |
---|---|---|---|---|---|
9.9 × 10-14 m3/s | 0.324 J/m2 | 100 kJ/mol | 1.38 × 10-23 J/K | 8.314 J/(K·mol) | 660 K (Chip A); 541 K (Chip B) |
Table 2 The related constants of recrystallization kinetics for the studied alloy [39].
δD0 | γ | Q | k | R | T |
---|---|---|---|---|---|
9.9 × 10-14 m3/s | 0.324 J/m2 | 100 kJ/mol | 1.38 × 10-23 J/K | 8.314 J/(K·mol) | 660 K (Chip A); 541 K (Chip B) |
Fig. 7. The microstructure of selected shear band zones: (a) Chip A and (c) Chip B, and HRTEM observations for dislocation regions: (b) local amplification of (a) and (d) local amplification of (c). The schematic diagrams of (e) dislocation climb and (f) dislocation glide, which shows the different dislocation motion types in shear bands.
[1] | A.Y. Yi, W. Lu, D.F. Farson, L.J. Lee, Adv. Polym. Technol. 27(2008) 188-198. |
[2] | O. Malek, J. Gonzalez-Julian, J. Vleugels, W. Vanderauwera, B. Lauwers, M. Bel- monte, Mater. Today 14 (2011) 496-501. |
[3] | J. Guo, J. Zhang, H. Wang, K. Liu, A.S. Kumar, Precis. Eng. 53(2018) 120-133. |
[4] | D. Dornfield, D-E. Lee, in: D. Dornfeld, D.-E. Lee (Eds.), Precision Manufactur- ing, eds, Springer US, Boston, MA, 2008, pp. 1-33. |
[5] | D.A. Lucca, M.J. Klopfstein, O. Riemer. J. Manuf. Sci. Eng. 142(2020) 110817. |
[6] | U. Kanji, M. Keiji, CIRP Ann. 41(1992) 129-132. |
[7] | H. Wang, S. To, C.Y. Chan, C.F. Cheung, W.B. Lee, Scr. Mater. 63(2010) 227-230. |
[8] | Y.J. Lee, H. Wang, Mater. Des. 192(2020) 108688. |
[9] | P.A. Rehbinder , in: The VI-th Congress of Russian Physicists, Moscow, 1928, p. 29. |
[10] | A. Chaudhari, Z.Y. Soh, H. Wang, A.K. Senthil, Int. J. Mach. Tools Manuf. 133(2018) 47-60. |
[11] | B. Roland, B. Marek, A. Helmi, P. Philippe, L. Gilles, Int. J. Mach. Tools Manuf. 109(2016) 137-146. |
[12] | H. Wang, S. To, C.Y. Chan, C.F. Cheung, W.B. Lee, Scr. Mater. 63(2010) 227-230. |
[13] | Z.P. Wan, Y.E. Zhu, H.W. Liu, Y. Tang, Mater. Sci. Eng. A 531 (2012) 155-163. |
[14] | A. Molinari, X. Soldani, M.H. Miguélez, J. Mech. Phys. Solids 61 (2013) 2331-2359. |
[15] | F. Ding, C.Y. Wang, T. Zhang, L.J. Zheng, X.G. Zhu, W.R. Li, L. Li. J. Mater. Proc. Technol. 276(2020) 1164004. |
[16] | Y. Bai, J. Mech. Phys. Solids 30 (1982) 195-207. |
[17] | T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands, Cam- bridge University Press, 2002. |
[18] | B. Dodd, Y. Bai, Adiabatic Shear Localization: Frontiers and Advances, Elsevier, 2012. |
[19] | J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li. J. Mater. Sci. 54(2019) 14561-14576. |
[20] | V.F. Nesterenko, M.A. Meyers, J.C. LaSalvia, M.P. Bondar, Y.J. Chen, Y.L. Lukyanov, Mater. Sci. Eng. A 229 (1997) 23-41. |
[21] | M.T. Perez-Prado, J.A. Hines, K.S. Vecchio, Acta Mater 49 (2001) 2905-2917. |
[22] | Y. Li, B. Hu, B. Liu, A.M. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187(2020) 51-65. |
[23] | D. Rittel, J. Phys. D-Appl.Phys. 42(2009) 214009. |
[24] | D. Rittel, S. Osovski, Int. J. Fract. 162(2010) 177-185. |
[25] | Y. Xu, J. Zhang, Y. Bai, M.A. Meyers, Metall. Mater. Trans. A 39 (2008) 811-843. |
[26] | M.A. Khan, Y.W. Wang, G. Yasin, F. Nazeer, A. Malik, T. Ahmad, W.Q. Khan, T.A. Nguyen, H. Zhang, M.A. Afifi. J. Mater. Res. Technol. 9(2020) 3977-3983. |
[27] |
J.Y. Zhang, Y.J. Lee, H. Wang, Int. J. Precis. Eng. Manuf.-Green Technol. (2020) DOI: 10.1007/s40684-020-00260-0.
DOI |
[28] | J. Zhang, B. Wang, D. Yi, Mater. Sci. Eng. A 764 (2019) 138252. |
[29] | J.Y. Zhang, M.Y. Ma, F.H. Shen, D.Q. Yi, B. Wang, Mater. Sci. Eng. A 710 (2018) 27-37. |
[30] | H.Y. Chao, H.F. Sun, W.Z. Chen, E.D. Wang, Mater. Charact. 62(2011) 312-320. |
[31] | Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li. J. Mater. Sci. Technol. 65(2021) 190-201. |
[32] | R. Bejjani, M. Balazinski, H. Attia, P. Plamondon, G. L’Esperance, Int. J. Mach. Tools Manuf. 109(2016) 137-146. |
[33] | C.J. Ge, M.Q. Li, Rare Metal Mat. Eng. 43(2014) 2069-2074. |
[34] | W.H. Yin, F. Xu, O. Ertorer, Z. Pan, X.Y. Zhang, L.J. Kecskes, E.J. Lavernia, Q. Wei, Acta Mater 61 (2013) 3781-3798. |
[35] | Y.Z. Guo, Q.C. Ruan, S.X. Zhu, Q. Wei, H.S. Chen, J.A. Lu, B. Hu, X.H. Wu, Y.L. Li, D.N. Fang, Phys. Rev. Lett. 122(2019) 15503. |
[36] | D. Rittel, L.H. Zhang, S. Osovski, J. Mech. Phys. Solids 107 (2017) 96-114. |
[37] | L.C. Tsao, M.J. Chiang, W.H. Lin, M.D. Cheng, T.H. Chuang, Mater. Charact. 48(2002) 341-346. |
[38] | M.A. Meyers, Y.B. Xu, Q. Xue, Perez-P. Mado, T.R. McNelley, Acta Mater 51 (2003) 1307-1325. |
[39] | B. Wang, R. Ma, J. Zhou, Z. Li, S. Zhao, X. Huang, Mater. Sci. Eng. A 675 (2016) 221-227. |
[40] | W.L. Zhang, L.J. He, Z.G. Lu, G.B. Kennedy, N.N. Thadhanl, P.J. Li, Mater. Sci. Eng. A 791 (2020) 139430. |
[41] | Y. Xu, J. Zhang, Y. Bai, M.A. Meyers, Metall. Mater. Trans. A 39 (2008) 811-843. |
[42] | S. Yuan, M. Huang, Y. Zhu, Z. Li, Mech. Mater. 118(2018) 44-61. |
[1] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[2] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[3] | Wei Song, Xinguang Wang, Jinguo Li, Jie Meng, Yanhong Yang, Jinlai Liu, Jide Liu, Yizhou Zhou, Xiaofeng Sun. Influence of Ta/Al ratio on the microstructure and creep property of a Ru-containing Ni-based single-crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 89(0): 16-23. |
[4] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[5] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[6] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[7] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[8] | Qing Han, Yipeng Li, Guang Ran, Xinyi Liu, Lu Wu, Yang Chen, Piheng Chen, Xiaoqiu Ye, Yifan Ding, Xiaoyong Wu. In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He + irradiation [J]. J. Mater. Sci. Technol., 2021, 87(0): 108-119. |
[9] | Qiang Wang, Liangcai Zeng, Tengfei Gao, Hui Du, Xinwang Liu. On the room-temperature tensile deformation behavior of a cast dual-phase high-entropy alloy CrFeCoNiAl0.7 [J]. J. Mater. Sci. Technol., 2021, 87(0): 29-38. |
[10] | Yaoxiang Duan, Han Chen, Zhe Chen, Lei Wang, Mingliang Wang, Jun Liu, Fengguo Zhang, Haowei Wang. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 74-82. |
[11] | Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90(0): 58-65. |
[12] | Jing Zhou, Qianqian Wang, Qiaoshim Zeng, Kuibo Yin, Anding Wang, Junhua Luan, Litao Sun, Baolong Shen. A plastic FeNi-based bulk metallic glass and its deformation behavior [J]. J. Mater. Sci. Technol., 2021, 76(0): 20-32. |
[13] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[14] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
[15] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||