J. Mater. Sci. Technol. ›› 2021, Vol. 91: 168-177.DOI: 10.1016/j.jmst.2021.03.010
• Invited Review • Previous Articles Next Articles
Di Wua, Wen Rena, Yanna NuLia,*(), Jun Yanga, Jiulin Wanga,b
Received:
2020-10-20
Revised:
2021-02-22
Accepted:
2021-03-01
Published:
2021-11-20
Online:
2021-11-20
Contact:
Yanna NuLi
About author:
*E-mail address: nlyn@sjtu.edu.cn (Y. NuLi).Di Wu, Wen Ren, Yanna NuLi, Jun Yang, Jiulin Wang. Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review[J]. J. Mater. Sci. Technol., 2021, 91: 168-177.
Fig. 2. (a) Proposed Se phase evolution during the electrochemical reaction. (b) Proposed phase transformation of the Se/CMK-3 electrode during discharge/charge. Reproduced with permission from Ref. [57]. (c) The reaction during the heating process and the possible molecular structure of selenized polyacrylonitrile composites. Reproduced with permission from Ref. [69]. Cycling performance (d) and rate performance (e) of the Se/PAN material prepared at 450 °C for 10 h with 8:1 wt ratio of Se and PAN in 0.4 mol L-1 (PhMgCl)2-AlCl3+1.0 mol L-1 LiCl/THF electrolyte. Reproduced with permission from Ref. [21].
Fig. 3. (a) The schematic figure for the displacement of Cu ions in β-Cu2Se with Mg ions to MgSe. Reproduced with permission from Ref. [78]. (b) Crystal structure of Cu2-xSe with cubic phase. SEM images of S-Cu2-xSe (c) and C—Cu2-xSe (d). (e) The diagram of the formation mechanism for S-Cu2-xSe and C—Cu2-xSe. Reproduced with permission from Ref. [81].
Fig. 4. (a) cycling performance of the CuSe nano-particles electrode at 50 mA g-1. Reproduced with permission from Ref. [82]. Low-magnification FESEM (b) and high-magnification FESEM (c) images of CuSe NCs. (d) Schematic illustration of the fabrication process of the nanosheet-assembled hierarchical hollow CuSe nanocubes. Reproduced with permission from Ref. [83]. (e) Schematic drawing of the preparation process for CueSe@MC composites. Reproduced with permission from Ref. [84].
Fig. 5. The TEM images (a), HRTEM image (b), and the fully discharged state image (c) of the CuSe nano-particles. Reproduced with permission from Ref. [82] The ex-situ XRD patterns of β-Cu2Se electrode (d) and the CuSe NCs electrode (e) at different charge-discharge states. Reproduced with permission from Refs. [78, 83].
Fig. 6. (a) Working mechanisms of the Se-Cu electrode. Reproduced with permission from Ref. [85]. The in-situ XRD patterns and the corresponding voltage profiles (b) of the Cu3Se2 electrode during the initial charge-discharge processes and the corresponding contour plot (c, d) during the initial cycles. The in-situ XRD patterns and the corresponding voltage profiles (e) of the Cu3Se2 electrode after conditioning processes and the corresponding contour plot (f, g) after the conditioned cycles. (h) The cycling performance of the copper selenide electrode (after condition process) at a current density of 100 mA g-1. Reproduced with permission from Ref. [86].
Fig. 7. (a) The cycling performance at C/8 rate in 0.25 mol L-1 Mg(AlCl2BuEt)2/THF electrolyte of various MgxMo6S8-ySey (x, y = 0, 1, 2) electrodes. Reproduced with permission from Ref. [91]. (b) Schematic drawing of the preparation process for WSe2 nanowire-assembled film. (c) Cycling performance of WSe2 nanowire-based electrode and WSe2 bulk electrode at 50 mA g-1 in 0.25 mol L-1 Mg(AlCl2BuEt)2/THF. (d) Cycling performance of WSe2 nanowire-based electrodes at 1500 and 3000 mA g-1 in 0.25 mol L-1 Mg(AlCl2BuEt)2/THF. SEM images of the WSe2-electrode (e) before and (f) after 80 cycles. (g-i) The structure model of the layer-structured WSe2 intercalated with Mg (Mg0.67WSe2). Reproduced with permission from Ref. [101].
[1] | Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111(2011) 3577-3613. |
[2] | J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367. |
[3] | H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 6(2013) 2265-2279. |
[4] | P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Prog. Mater. Sci. 66(2014) 1-86. |
[5] | H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7(2017) 1700260. |
[6] | J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 5(2012) 5941-5950. |
[7] | L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li, C. Yang, Y. Zhu, Adv. Energy Mater. 5(2014) 1401377. |
[8] | L.P. Lossius, F. Emmenegger, Electrochim. Acta 41 (1996) 445-447. |
[9] | D. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 3(2003) 61-73. |
[10] | R. Attias, M. Salama, B. Hirsch, Y. Gofer, D. Aurbach, ChemElectroChem. 5(2018) 3514-3524. |
[11] | M. Zheng, M.R. Douglas, K. Mega, Batteries Supercaps 2 (2019) 115-127. |
[12] | J.M. Nelson, W.V. Evans. J. Am. Chem. Soc. 39(1917) 82-83. |
[13] | D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 407 (2000) 724-727. |
[14] | D. Aurbach, A. Schechter, M. Moshkovich, Y. Cohen. J. Electrochem. Soc. 148 (2001)A1004-A1014. |
[15] | D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Aviv, O. Chusid, M. Brunelli, Adv. Mater. 19(2007) 4260-4267. |
[16] | O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach. J. Electrochem. Soc. 155(2008) A103-A109. |
[17] | Y. Cheng, H.J. Chang, H. Dong, D. Choi, V.L. Sprenkle, J. Liu, Y. Yao, G. Li. J Mater. Res. 31(2016) 3125-3141. |
[18] | Y. Cheng, Y. Shao, J.G. Zhang, V.L. Sprenkle, J. Liu, G. Li, Chem. Commun. 50(2014) 9644-9646. |
[19] | T. Gao, M. Noked, A.J. Pearse, E. Gillette, X. Fan, Y. Zhu, C. Luo, L. Suo, M.A. Schroeder, K. Xu, S.B. Lee, G.W. Rubloff, C. Wang. J. Am. Chem. Soc. 137(2015) 12388-12393. |
[20] | T. Li, A. Qin, H. Wang, M. Wu, Y. Zhang, Y. Zhang, D. Zhang, Electrochim. Acta 263 (2018) 168-175. |
[21] | H. Yuan, Y. Yang, Y. NuLi, J. Yang, J. Wang, J. Mater. Chem. A 6 (2018) 17075-17085. |
[22] | H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, J. Muldoon, Nat. Commun. 2(2011) 427. |
[23] | Z. Zhao-Karger, X. Zhao, O. Fuhr, M. Fichtner, RSC Adv. 3(2013) 16330-16335. |
[24] | C. Liao, N. Sa, B. Key, A.K. Burrell, L. Cheng, L.A. Curtiss, J.T. Vaughey, J.J. Woo, L. Hu, B. Pan, Z. Zhang, J. Mater. Chem. A 3(2015) 6082-6087. |
[25] | Z. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R.J. Behm, M. Fichtner, Adv. Energy Mater. 5(2014) 1401155. |
[26] | X. Yu, A. Manthiram, ACS Energy Lett 1(2016) 431-437. |
[27] | R. Mohtadi, M. Matsui, T.S. Arthur, S.J. Hwang, Angew. Chem. Int. Ed. 51(2012) 9780-9783. |
[28] | O. Zavorotynska, A. El-Kharbachi, S. Deledda, B.C. Hauback, Int. J. Hydrog. En- ergy 41 (2016) 14387-14403. |
[29] | Y. Shao, T. Liu, G. Li, M. Gu, Z. Nie, M. Engelhard, J. Xiao, D. Lv, C. Wang, J.G. Zhang, J. Liu, Sci. Rep. 3(2013) 3130. |
[30] | T.J. Carter, R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang, S. Shirai, J.W. Kampf, Angew. Chem. Int. Ed. 126(2014) 3237-3241. |
[31] | O. Tutusaus, R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, Y.V. Sevryugina, Angew. Chem. Int. Ed. 127(2015) 8011-8015. |
[32] | S.G. Mcarthur, R. Jay, L. Geng, J. Guo, V. Lavallo, Chem. Commun. 53(2017) 4 453-4 456. |
[33] | J. Luo, Y. Bi, L. Zhang, X. Zhang, T. Liu, Angew. Chem. Int. Ed. 58(2019) 6967-6971. |
[34] | Z. Zhao-Karger, M.E.G. Bardaji, O. Fuhr, M. Fichtner, J. Mater. Chem. A 5(2017) 10815-10820. |
[35] | Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu, X. Wang, P. Hu, H. Du, S. Li, X. Zhou, S. Dong, Z. Liu, G. Cui, L. Chen, Adv. Energy Mater. 7(2017) 1602055. |
[36] | P. Canepa, S. Jayaraman, L. Cheng, N.N. Rajput, W.D. Richards, G.S. Gautam, L.A. Curtiss, K.A. Persson, G. Ceder, Energy Environ. Sci. 8(2015) 3718-3730. |
[37] | K.A. See, K.W. Chapman, L. Zhu, K.M. Wiaderek, O.J. Borkiewicz, C.J. Barile, P.J. Chupas, A.A. Gewirth, J.Am. Chem. Soc. 138(2015) 328-337. |
[38] | C.J. Barile, E.C. Barile, K.R. Zavadil, R.G. Nuzzo, A.A. Gewirth, J. Phys. Chem. C 118 (2014) 27623-27630. |
[39] | T. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, C. Wang, J. Liu, J. Mater. Chem. A 2(2014) 3430-3438. |
[40] | J.H. Ha, B. Adams, J.-.H. Cho, V. Duffort, J.H. Kim, K.Y. Chung, B.W. Cho, L.F. Nazar, S.H. Oh, J. Mater. Chem. A 4(2016) 7160-7164. |
[41] | W. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, Y. Xu, F. Ye, M. Liu, L. Zhou, Y. Zhang, Angew. Chem. Int. Ed. 55(2016) 6406-6410. |
[42] | B. Pan, J. Zhang, J. Huang, J.T. Vaughey, L. Zhang, S.D. Han, A.K. Burrell, Z. Zhang, C. Liao, Chem. Commun. 51(2015) 6214-6217. |
[43] | T.T. Tran, W.M. Lamanna, M.N. Obrovac, J. Electrochem. Soc. 159(2012) A20 05-A20 09. |
[44] | S. Terada, T. Mandai, S. Suzuki, S. Tsuzuki, K. Watanabe, Y. Kamei, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C 120 (2016) 1353-1365. |
[45] | S.Y. Ha, Y.W. Lee, S.W. Woo, B. Koo, J.S. Kim, J. Cho, K.T. Lee, N.S. Choi, ACS Appl. Mater. Interfaces 6(2014) 4063-4073. |
[46] | Z. Ma, M. Kar, C. Xiao, M. Forsyth, D.R. Macfarlane, Electrochem. Commun. 78(2017) 29-32. |
[47] | S. Hebié, H.P.K. Ngo, J.C. Leprêtre, C. Iojoiu, L. Cointeaux, R. Berthelot, F. Alloin, ACS Appl. Mater. Interfaces 9(2017) 28377-28385. |
[48] | T. Gao, S. Hou, F. Wang, Z. Ma, X. Li, K. Xu, C. Wang, Angew. Chem. Int. Ed. 56(2017) 13526-13530. |
[49] | Y. Cheng, R.M. Stolley, K.S. Han, Y. Shao, B.W. Arey, N.M. Washton, K.T. Mueller, M. Helm, V.L. Sprenkle, J. Liu, G. Li, Phys. Chem. Chem. Phys. 17(2015) 13307-13314. |
[50] | S. Hebié, F. Alloin, C. Iojoiu, R. Berthelot, J.C. Leprêtre, ACS Appl. Mater. Inter- faces 10 (2018) 5527-5533. |
[51] | R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 50(2014) 243-245. |
[52] | R. Deivanayagam, B.J. Ingram, R. Shahbazian-Yassar, Energy Storage Mater 21 (2019) 136-153. |
[53] | F. Liu, T. Wang, X. Liu, L.Z. Fan, Adv. Energy Mater. early view (2020) 2000787. |
[54] | X. Zhao, Y. Yang, Y. Nuli, D. Li, Y. Wang, X. Xiang, Chem. Commun. 55(2019) 6086-6089. |
[55] | Y. Yang, Y. Qiu, Y. Nuli, W. Wang, J. Yang, J. Wang, J. Mater. Chem. A 7(2019) 18295-18303. |
[56] | Y. Yang, W. Wang, Y. NuLi, J. Yang, J. Wang, ACS Appl. Mater. Interfaces 11 (2019) 9062-9072. |
[57] | Z. Zhao-Karger, X.-.M. Lin, C.B. Minella, D. Wang, T. Diemant, R.J. Behm, M. Fichtner, J. Power Sources 323 (2016) 213-219. |
[58] | X. Gu, T. Tang, X. Liu, Y. Hou, J. Mater. Chem. A 7(2019) 11566-11583. |
[59] | C. Luo, J. Wang, L. Suo, J. Mao, X. Fan, C. Wang, J. Mater. Chem. A 3(2014) 555-561. |
[60] | J. Zhou, J. Yang, Z. Xu, T. Zhang, Z. Chen, J. Wang, J. Mater. Chem. A 5(2017) 9350-9357. |
[61] | Z. Yi, L. Yuan, D. Sun, Z. Li, C. Wu, W. Yang, Y. Wen, B. Shan, Y. Huang, J. Mater. Chem. A 3(2015) 3059-3065. |
[62] | D.B. Babu, K. Ramesha, Electrochim. Acta 219 (2016) 295-304. |
[63] | C. Luo, Y. Xu, Y. Zhu, Y. Liu, C. Wang, ACS Nano 7 (2013) 8003-8010. |
[64] | C. Yang, S. Xin, Y. Yin, H. Ye, J. Zhang, Y. Guo, Angew. Chem. Int. Ed. 52(2013) 8363-8367. |
[65] | L.C. Zeng, W.H. Li, Y. Jiang, Y. Yu, Rare Met 36 (2017) 1-26. |
[66] | C. Luo, Y. Zhu, Y. Wen, J. Wang, C. Wang, Adv. Funct. Mater. 24(2014) 4082-4089. |
[67] | D. Kundu, F. Krumeich, R. Nesper, J. Power Sources 236 (2013) 112-117. |
[68] | H. Wang, S. Li, Z. Chen, H.K. Liu, Z. Guo, RSC. Adv. 4(2014) 61673-61678. |
[69] | J. Guo, Z. Wen, Q. Wang, J. Jin, G. Ma, J. Mater. Chem. A 3(2015) 19815-19821. |
[70] | P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000) 496-4 99. |
[71] | D. He, D. Wu, J. Gao, X. Wu, X. Zeng, W. Ding, J. Power Sources 294 (2015) 643-649. |
[72] | J. Cabana, L. Monconduit, D. Larcher, M.S. Palacin, Adv. Mater. 22(2010) E170-E192. |
[73] | M. Mao, T. Gao, S. Hou, F. Wang, C. Wang, Nano Lett 19 (2019) 6665-6672. |
[74] | W. Wang, Y. Yang, Y. NuLi, J. Zhou, J. Yang, J. Wang, J. Power Sources 445 (2020) 227325. |
[75] | T. Takahashi, O. Yamamoto, F. Matsuyama, Y. Noda, J. Solid State Chem. 16(1976) 35-39. |
[76] | M.Z. Xue, Y.N. Zhou, B. Zhang, L. Yu, H. Zhang, Z.W. Fu. J. Electrochem. Soc. 153(2006) A2262-A2268. |
[77] | J.L. Yue, Q. Sun, Z.W. Fu, Chem. Commun. 49(2013) 5868-5870. |
[78] | Y. Tashiro, K. Taniguchi, H. Miyasaka, Electrochim. Acta 210 (2016) 655-661. |
[79] | H. Yuan, N. Wang, Y. Nuli, J. Yang, J. Wang, Electrochim. Acta 261 (2018) 503-512. |
[80] | H. Li, J. Jiang, J. Huang, Y. Wang, Y. Peng, Y. Zhang, B.J. Hwang, J. Zhao, ACS Appl. Mater. Interfaces 10 (2018) 13491-13498. |
[81] | D. Chen, Y. Zhang, X. Li, J. Shen, Z. Chen, S. Cao, T. Li, F. Xu, Chem. Eng. J. 384(2020) 123235. |
[82] | S. Yang, F. Ji, Z. Wang, Y. Zhu, K. Hu, Y. Ouyang, R. Wang, X. Ma, C. Cao, Elec- trochim. Acta 324 (2019) 134864. |
[83] | C. Du, W. Younas, Z. Wang, X. Yang, E. Meng, L. Wang, J. Huang, X. Ma, Y. Zhu, C. Cao, J. Mater. Chem. A 9(2021) 3648-3656. |
[84] | D. Wu, W. Wang, Y. Nuli, J. Yang, J. Wang, Electrochim. Acta 330 (2020) 135354. |
[85] | Z. Zhang, B. Chen, H. Xu, Z. Cui, S. Dong, A. Du, J. Ma, Q. Wang, X. Zhou, G. Cui, Adv. Funct. Mater. 28(2017) 1701718. |
[86] | X. Cheng, Z. Zhang, Q. Kong, Q. Zhang, T. Wang, Dong S, L. Gu, X. Wang, J. Ma, P. Han, H. Lin, C. Chen, G. Cui, Angew. Chem. Int. Ed. 59(2020) 11477-11482. |
[87] | M. Levi, H. Gizbar, E. Lancry, Y. Gofer, E. Levi, D. Aurbach. J. Electroanal. Chem. 569(2004) 211-223. |
[88] | E. Levi, E. Lancry, A. Mitelman, D. Aurbach, G. Ceder, D. Morgan, O. Isnard, Chem. Mater. 18(2006) 5492-5503. |
[89] | E. Levi, E. Lancry, A. Mitelman, D. Aurbach, O. Isnard, D. Djurado, Chem. Mater. 18(2006) 3705-3714. |
[90] | E. Lancry, E. Levi, Y. Gofer, M. Levi, G. Salitra, D. Aurbach, Chem. Mater. 16(2004) 2832-2838. |
[91] | D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, M. Brunell, Adv. Mater. 19(2007) 4260-4267. |
[92] | P.G. Bruce, F. Krok, P. Lightfoot, J.L. Nowinski, V.C. Gibson, Solid State Ion. 53(1992) 351-355. |
[93] | P.G. Bruce, F. Krok, J. Nowinski, V.C. Gibson, K. Tavakkoli. J. Mater. Chem. 1(1991) 705-706. |
[94] | R. Sun, C. Pei, J. Sheng, D. Wang, L. Wu, S. Liu, Q. An, L. Mai, Energy Stor. Mater. 12(2018) 61-68. |
[95] | M. Mao, X. Ji, S. Hou, T. Gao, F. Wang, L. Chen, X. Fan, J. Chen, J. Ma, C. Wang, Chem. Mater. 31(2019) 3183-3191. |
[96] | Z. Wang, Q. Su, H. Deng, Phys. Chem. Chem. Phys. 15(2012) 8705-8709. |
[97] | S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Solid State Ion 225 (2012) 542-546. |
[98] | S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Electrochim. Acta 82 (2012) 243-249. |
[99] | G. Gershinsky, H.D. Yoo, Y. Gofer, D. Aurbach, Langmuir 29 (2013) 10964-10972. |
[100] | L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong, S. Tan, Q. An, Y. Kang, Z. Zhou, L. Mai, Adv. Mater. 30(2018) 1801984. |
[101] | B. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, ACS Nano 7(2013) 8051-8058. |
[1] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[2] | Limin Zhu, Zhen Li, Guochun Ding, Lingling Xie, Yongxia Miao, Xiaoyu Cao. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 68-87. |
[3] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[4] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[5] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[6] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[7] | Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes [J]. J. Mater. Sci. Technol., 2020, 55(0): 1-15. |
[8] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
[9] | Jaffer Saddique, Xu Zhang, Tianhao Wu, Heng Su, Shiqi Liu, Dian Zhang, Yuefei Zhang, Haijun Yu. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 73-80. |
[10] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[11] | Chongjia Zhu, Zhiqiu Wu, Jian Xie, Zhen Chen, Jian Tu, Gaoshao Cao, Xinbing Zhao. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode [J]. J. Mater. Sci. Technol., 2018, 34(9): 1544-1549. |
[12] | Jun-Rui Wang, Feng Wan, Qiu-Feng Lü, Fei Chen, Qilang Lin. Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance [J]. J. Mater. Sci. Technol., 2018, 34(10): 1959-1968. |
[13] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
[14] | Peiyi Zhu, Shuangyu Liu, Jian Xie, Shichao Zhang, Gaoshao Cao, Xinbing Zhao. Facile Synthesis of NiFe2O4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance [J]. J. Mater. Sci. Technol., 2014, 30(11): 1078-1083. |
[15] | Lijun Gong, Yuxi Chen, Hongjiang Yu, Hongbo Liu, Caifu Li, Zhi-Quan Liu. Carbon-coated Li4Ti5O12 Anode Materials Synthesized Using H2TiO3as Ti Source [J]. J. Mater. Sci. Technol., 2014, 30(11): 1092-1095. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||