J. Mater. Sci. Technol. ›› 2021, Vol. 89: 242-252.DOI: 10.1016/j.jmst.2020.04.011
Hongyu Chena,b, Dongdong Gua,b,*(), Liang Dengc, Tiwen Luc, Uta Kühnc, Konrad Kosibac
Received:
2019-11-07
Revised:
2020-01-07
Accepted:
2020-01-20
Published:
2021-10-30
Online:
2021-10-30
Contact:
Dongdong Gu
About author:
*College of Materials Science and Technology, NanjingUniversity of Aeronautics and Astronautics, Nanjing 210016, China.E-mail address: dongdonggu@nuaa.edu.cn (D. Gu).Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure[J]. J. Mater. Sci. Technol., 2021, 89: 242-252.
Fe | C | Cr | Ni | Mo | Si | Mn | P | S |
---|---|---|---|---|---|---|---|---|
Balance | 0.45 | 1.35 | 4.0 | 0.25 | 0.25 | 0.40 | ≤0.025 | ≤0.005 |
Table 1 Chemical compositions of as-used Fe-based alloy powder (wt.%).
Fe | C | Cr | Ni | Mo | Si | Mn | P | S |
---|---|---|---|---|---|---|---|---|
Balance | 0.45 | 1.35 | 4.0 | 0.25 | 0.25 | 0.40 | ≤0.025 | ≤0.005 |
Fig. 1. (a) Scanning electron microscope (SEM) images display typical morphologies of the as-prepared composite powder. (b) The magnified SEM image highlights the distribution of WC particle on the surface of particles of the matrix powder. (c, d) The energy-dispersive X-ray spectroscopy (EDS) analysis confirms the submicron-sized particle to be the WC, where the atomic fraction of C is much higher than W probably because of the contamination of C or different sensitivities of W and C to EDS detection during SEM.
Fig. 3. SEM images show typical surface morphologies and the μ-CTs reveal the distribution of pores within LPBF-processed composite samples prepared at various laser energy densities: (a, b) 60 J/mm3; (c, d) 100 J/mm3; (e, f) 150 J/mm3; (g, h) 200 J/mm3.
Fig. 4. (a) XRD pattern of LPBF-fabricated composite samples processed at different laser energy densities. (b) Additional XRD pattern were obtained for the 2θ region where reflections of α-Fe and γ-Fe phases are present (50°-54°).
Sample | Lattice parameters of austenite (Å) | Lattice parameters of martensite (Å) | Content of retained-austenite (vol.%) |
---|---|---|---|
60 J/mm3 | a = 3.606 | a = 2.822, c = 2.931 | 18.1 |
100 J/mm3 | a = 3.604 | a = 2.826, c = 2.935 | 16.7 |
150 J/mm3 | a = 3.602 | a = 2.830, c = 2.933 | 13.2 |
200 J/mm3 | a = 3.599 | a = 2.818, c = 2.926 | 12.8 |
Table 2 Lattice parameters of austenite and martensite and content of retained-austenite within composite samples processed at different processing parameters.
Sample | Lattice parameters of austenite (Å) | Lattice parameters of martensite (Å) | Content of retained-austenite (vol.%) |
---|---|---|---|
60 J/mm3 | a = 3.606 | a = 2.822, c = 2.931 | 18.1 |
100 J/mm3 | a = 3.604 | a = 2.826, c = 2.935 | 16.7 |
150 J/mm3 | a = 3.602 | a = 2.830, c = 2.933 | 13.2 |
200 J/mm3 | a = 3.599 | a = 2.818, c = 2.926 | 12.8 |
Fig. 5. SEM images show etched microstructures of LPBF samples processed at different laser energy densities: (a) 60 J/mm3; (b) 100 J/mm3; (c) 150 J/mm3; (d) 200 J/mm3.
Fig. 6. Magnified SEM images of the cellular structures and related EDX mappings showing the element distribution of C, Fe, W, and Cr. (η = 150 J/mm3).
Fig. 7. (a) Bright-field TEM image of the cellular structure and carbidic network formed along the cell boundaries; (b) the corresponding SAED pattern of the indicated region in (a).
Fig. 8. Schematics illustrate the mechanism of the solidification process during LPBF resulting in the microstructure of the composite material. (a) Composite powder is exposed by the high-energy laser beam (red area). (b) Fe-based matrix and WC particles are completely molten and uniformly dissolved in a liquid. (c) Aside the austenitic Fe-based matrix, Fe2W4C carbides precipitate and form a network. (d) Once the temperature is below the martensite start temperature, Ms, the austenite transforms into martensite until the martensite finish temperature, Mf, is reached.
Fig. 9. Microhardness maps obtained at the lateral surface of samples prepared at different laser energy densities: (a) 60 J/mm3; (b) 100 J/mm3; (c) 150 J/mm3; (d) 200 J/mm3.
Fig. 10. Different indentation morphologies corresponding to different microhardness values of LPBD-fabricated composites prepared at different laser energy densities: (a) 60 J/mm3; (b) 100 J/mm3; (c) 150 J/mm3; (d) 200 J/mm3.
Fig. 12. Typical SEM images taken from the fracture surfaces of compressed specimens fabricated at different laser energy densities: (a) 60 J/mm3; (b) 100 J/mm3; (c) 150 J/mm3; (d) 200 J/mm3.
[1] |
R. Casati, J. Lemke, M. Vedani, , J. Mater. Sci. Technol. 32 (2016) 738-744.
DOI URL |
[2] |
H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76 (2014) 13-22.
DOI URL |
[3] |
L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Scr. Mater. 65 (2011) 21-24.
DOI URL |
[4] | J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, Appl. Mater. Today 9 (2017) 341-349. |
[5] | S. Pauly, P. Wang, U. Kühn, K. Kosiba, Addit. Manuf. 22 (2018) 753-757. |
[6] | J. Sander, J. Hufenbach, L. Giebeler, H. Wendrock, U. Kühn, J. Eckert, Mater.Des. 89 (2016) 335-341. |
[7] |
J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash U. Ramamurty, Acta Mater. 115 (2016) 285-294.
DOI URL |
[8] |
Y.M. Wang, T. Voisin, J.T.McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang,W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V.Hamza, T. Zhu, Nat. Mater. 17 (2018) 63-71.
DOI URL |
[9] |
Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, T.B. Sercombe, Scr. Mater. 153 (2018) 99-103.
DOI URL |
[10] |
K. Das, T. Bandyopadhyay, S. Das, , J. Mater. Sci. 37 (2002) 3881-3892.
DOI URL |
[11] |
B. AlMangour, D. Grzesiak, J.M. Yang, Mater. Des. 104 (2016) 141-151.
DOI URL |
[12] |
B. AlMangour, D. Grzesiak, J.M. Yang, Mater. Des. 96 (2016) 150-161.
DOI URL |
[13] |
W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, Y.C. Liu, , J. Mater. Sci. Technol. 36 (2020) 84-90.
DOI URL |
[14] | Kovalev, A.M. Gurin, Int. J. Heat Mass Tran. 68 (2014) 269-277. |
[15] | B. Song, S. Dong, P. Coddet, G. Zhou, S. Ouyang, H. Liao, C. Coddet, J. AlloysCompd. 579 (2013) 415-421. |
[16] | N. Kang, W. Ma, L. Heraud, M. El Mansori, F. Li, M. Liu, H. Liao, Addit. Manuf. 22 (2018) 104-110. |
[17] |
B. AlMangour, D. Grzesiak, J.M. Yang, , J. Mater. Process. Technol. 244 (2017) 344-353.
DOI URL |
[18] |
T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, G.J. Tatlock, Acta Mater. 87 (2015) 201-215.
DOI URL |
[19] |
N. Kang, W.Y. Ma, F.H. Li, H.L. Liao, M. Liu, C. Coddet, Vacuum 154 (2018) 69-74.
DOI URL |
[20] |
J.D. Wang, L.Q. Li, W. Tao, Opt. Laser Technol. 82 (2016) 170-182.
DOI URL |
[21] |
D.J. Liu, L.Q. Li, F.Q. Li, Y.B. Chen, Surf. Coat. Technol. 202 (2008) 1771-1777.
DOI URL |
[22] |
J.M. Howe, Int. Mater. Rev. 38 (1993) 233-256.
DOI URL |
[23] |
S.K. Ghosh, P. Saha, Mater. Des. 32 (2011) 139-145.
DOI URL |
[24] |
H.H. Zhu, L. Lu, J.Y.H. Fuh, Mater. Sci. Eng. A 371 (2004) 170-177.
DOI URL |
[25] | J.P. Kruth, G. Levy, F. Klocke, T.H.C.Childs, CIRP Ann-Manuf.Technol. 56 (2007) 730-759. |
[26] |
D.D. Gu, Y.-C. Hagedorn, W.Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach,R. Poprawe, Acta Mater. 60 (2012) 3849-3860.
DOI URL |
[27] |
K. Arafune, A. Hirata, J. Cryst. Growth 197 (1999) 811-817.
DOI URL |
[28] |
M.L. Zhong, H.Q. Sun, W.J. Liu, X.F. Zhu, J.J. He, Scr. Mater. 53 (2005) 159-164.
DOI URL |
[29] | J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, Om Prakash, U.Ramamurty, Acta Mater. 115 (2016) 285-294. |
[30] |
J.M. Moyer, G.S. Ansell, Metall. Trans. A 6 (1975) 1785-1791.
DOI URL |
[31] |
G. Cacciamani, A. Dinsdale, S. Palumbo, Intermetallics 18 (2010) 1148-1162.
DOI URL |
[32] |
P.P. Yuan, D.D. Gu, D.H. Dai, Mater. Des. 82 (2015) 46-55.
DOI URL |
[33] |
B. AlMangour, D. Grzesiak, J.M. Yang, , J. Alloys Compd. 706 (2017) 409-418.
DOI URL |
[34] | X. Wu, G. Chen, , J. Mater. Sci. Technol. 15 (1999) 233-238. |
[35] |
D. Wang, C.H. Song, Y.Q. Yang, Y.C. Bai, Mater. Des. 100 (2016) 291-299.
DOI URL |
[36] |
D.D. Gu, H.Q. Wang, D.H. Dai, P.P. Yuan, W. Meiners, R. Poprawe, Scr. Mater. 96 (2015) 25-28.
DOI URL |
[37] | T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze, Metall.Mater. Trans. B 44 (2013) 794-796. |
[38] |
Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater. 110 (2016) 226-235.
DOI URL |
[39] | J.W. Cahn, Acta Metall. Sin. 10 (1962) 789-798. |
[40] |
P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, S. Wood, Toxicol. Sci. 90 (2006) 23-32.
PMID |
[41] |
C.C. Koch, R.O. Scattergood, Mater. Res. Lett. 3 (2015) 65-75.
DOI URL |
[42] | M.J. Holzweissig, A. Taube, F. Brenne, M. Schaper, T. Niendorf, Metall. Mater.Trans. B 46 (2015) 545-549. |
[43] |
A. Inoue, B.L. Shen, C.T. Chang, Acta Mater. 52 (2004) 4093-4099.
DOI URL |
[44] | Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, P. M.Chalupová, P. Palček, Lukáč, Compos. Sci. Technol. 69 (2009) 2256-2264. |
[1] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[2] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[3] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[4] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[5] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[6] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[7] | Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness [J]. J. Mater. Sci. Technol., 2021, 85(0): 235-244. |
[8] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[9] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
[10] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[11] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[12] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[13] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[14] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[15] | Jinxue Ding, Xiaokang Ma, Xiaomeng Fan, Jimei Xue, Fang Ye, Laifei Cheng. Failure behavior of interfacial domain in SiC-matrix based composites [J]. J. Mater. Sci. Technol., 2021, 88(0): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||