J. Mater. Sci. Technol. ›› 2021, Vol. 77: 108-116.DOI: 10.1016/j.jmst.2020.09.046
• Research Article • Previous Articles Next Articles
Gaoqi Tiana, Songrui Weib, Zhangtao Guoa, Shiwei Wua, Zhongli Chena, Fuming Xub, Yang Caoa,c, Zheng Liua, Jieqiong Wanga,*(), Lei Dinga, Jinchun Tua,*(
), Hao Zengd,*(
)
Received:
2020-07-21
Revised:
2020-09-28
Accepted:
2020-09-29
Published:
2021-06-30
Online:
2020-11-14
Contact:
Jieqiong Wang,Jinchun Tu,Hao Zeng
About author:
haozeng@buffalo.edu (H. Zeng).Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting[J]. J. Mater. Sci. Technol., 2021, 77: 108-116.
Fig. 1. Schematic illustration of the synthesis process for NiMoP2-Ni2P/CC and the design of NiMoP2-Ni2P/CC electrocatalysts as a bifunctional catalyst for OER and HER.
Fig. 2. (a) XRD patterns of NiMoP2-Ni2P/CC heterostructure. (b-d) High-resolution XPS spectra of the (b) Ni 2p, (c) Mo 3d, and (d) P 2p of NiMoP2-Ni2P/CC heterostructures and NiMoP2/CC.
Fig. 3. (a, b) SEM images of NiMo(OH)x/CC, and (c, d) NiMoP2-Ni2P/CC. (e) TEM micrographs of NiMoP2-Ni2P/CC. (f) HRTEM image of NiMoP2-Ni2P/CC. (g) HRTEM image of partial region enlarged in (f). (h) STEM and EDX elemental mapping images of Ni, Mo and P for NiMoP2-Ni2P/CC.
Fig. 4. (a) LSV polarization curves of OER and HER for Pt-C/CC, NiMoP2-Ni2P/CC, NiMoP2/CC, Ni2P/CC, NiMo(OH)x/CC, carbon fibers; (b) the histogram of OER overpotential and Tafel plots for NiMoP2-Ni2P/CC, NiMoP2/CC, Ni2P/CC, NiMo(OH)x/CC; (c) the histogram of HER overpotential and Tafel plots for Pt-C/CC, NiMoP2-Ni2P/CC, NiMoP2/CC, Ni2P/CC, NiMo(OH)x/CC, carbon fibers. (d) OER and (e) HER chronoamperometry curves of NiMoP2-Ni2P/CC for 20 h at 10 mA cm-2, 30 mA cm-2, 50 mA cm-2, respectively.
Catalysts | η(V) | Electrolyte |
---|---|---|
NiMoP2 -Ni2 P/CC (This work) | 1.48 | 1.0 M KOH |
Ni1 Mo1 P NSs@MCNTs [ | 1.60 | 1.0 M KOH |
MoP@Ni3 P/NF [ | 1.67 | 1.0 M KOH |
Ni2 P nanoparticles [ | 1.63 | 1.0 M KOH |
Ni5 P4 [ | 1.70 | 1.0 M KOH |
NiS@Ni2 P2 S6 /NF [ | 1.64 | 1.0 M KOH |
MoP/Ni2 P/NF [ | 1.55 | 1.0 M KOH |
Co5 Mo1 P NSs@NF||Co5 Mo1 O NSs@NF [ | 1.57 | 1.0 M KOH |
MoNiN [ | 1.563 | 1.0 M KOH |
N-NiMoO4 /NiS2 nanowires/nanosheets [ | 1.60 | 1.0 M KOH |
Ni2 P/Cu3 P [ | 1.60 | 1.0 M KOH |
MoS2 -Ni3 S2 particles [ | 1.56 | 1.0 M KOH |
Table 1. Comparisons of the water splitting activities of various bifunctional catalysts (η: overpotential at the current density of 10 mA cm-2).
Catalysts | η(V) | Electrolyte |
---|---|---|
NiMoP2 -Ni2 P/CC (This work) | 1.48 | 1.0 M KOH |
Ni1 Mo1 P NSs@MCNTs [ | 1.60 | 1.0 M KOH |
MoP@Ni3 P/NF [ | 1.67 | 1.0 M KOH |
Ni2 P nanoparticles [ | 1.63 | 1.0 M KOH |
Ni5 P4 [ | 1.70 | 1.0 M KOH |
NiS@Ni2 P2 S6 /NF [ | 1.64 | 1.0 M KOH |
MoP/Ni2 P/NF [ | 1.55 | 1.0 M KOH |
Co5 Mo1 P NSs@NF||Co5 Mo1 O NSs@NF [ | 1.57 | 1.0 M KOH |
MoNiN [ | 1.563 | 1.0 M KOH |
N-NiMoO4 /NiS2 nanowires/nanosheets [ | 1.60 | 1.0 M KOH |
Ni2 P/Cu3 P [ | 1.60 | 1.0 M KOH |
MoS2 -Ni3 S2 particles [ | 1.56 | 1.0 M KOH |
Fig. 6. (a-c) The schematic diagram of the NiMoP2, Ni2P, and NiMoP2-Ni2P crystal structures; (d) distribution of the charge density on the interface of the heterostructure; (e) the density of state (DOS) results of heterostructures and single phases; (f) the calculated free energy diagram for the HER on various atoms of NiMoP2-Ni2P/CC different position and various atoms of NiMoP2, Ni2P.
Atom | NiMoP2 electrons value (eV) | NiMoP2 -Ni2 P electrons value (eV) | Electrons transfer value (eV) |
---|---|---|---|
Ni | 9.9139 | 9.9879 | 0.0740 |
Mo | 5.5409 | 5.3798 | -0.1611 |
Table 2. The value of electron transfer for Ni, Mo elements on the amorphous interface.
Atom | NiMoP2 electrons value (eV) | NiMoP2 -Ni2 P electrons value (eV) | Electrons transfer value (eV) |
---|---|---|---|
Ni | 9.9139 | 9.9879 | 0.0740 |
Mo | 5.5409 | 5.3798 | -0.1611 |
[1] |
A.T. Garcia-Esparza, T. Shinagawa, S. Ould-Chikh, M. Qureshi, X.Y. Peng, N.N. Wei, D.H. Anjum, A. Clo, T.C. Weng, D. Nordlund, D. Sokaras, J. Kubota, K. Domen, K. Takanabe, Angew. Chem.-Int. Edit. 56 (2017) 5780-5784.
DOI URL |
[2] |
C.L. Hu, L. Zhang, Z.J. Zhao, A. Li, X.X. Chang, J.L. Gong, Adv. Mater. 30 (2018), 1705538.
DOI URL |
[3] |
D. Kang, T.W. Kim, S.R. Kubota, A.C. Cardiel, H.G. Cha, K.S. Choi, Chem. Rev. 115 (2015) 12839-12887.
DOI URL |
[4] |
L. Najafi, S. Bellani, R. Oropesa-Nunez, M. Prato, B. Martin-Garcia, R. Brescia, F. Bonaccorso, ACS Nano 13 (2019) 3162-3176.
DOI URL PMID |
[5] |
J.Q. Shan, T. Ling, K. Davey, Y. Zheng, S.Z. Qiao, Adv. Mater. 31 (2019), 1900510.
DOI URL |
[6] |
Z.X. Yin, Y. Sun, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, J. Mater. Chem. A 5 (2017) 13648-13658.
DOI URL |
[7] |
J. Du, Z.H. Zou, C. Liu, C.L. Xu, Nanoscale 10 (2018) 5163-5170.
DOI URL |
[8] |
X.Z. Kong, T. Zhu, F.Y. Cheng, M.N. Zhu, X.X. Cao, S.Q. Liang, G.Z. Cao, A.Q. Pan, ACS Appl. Mater. Interfaces 10 (2018) 8730-8738.
DOI URL |
[9] |
Y. Wang, Y.M. Ni, B. Liu, S.X. Shang, S. Yang, M.H. Cao, C.W. Hu, Electrochim. Acta 257 (2017) 356-363.
DOI URL |
[10] |
M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, J. Am. Chem. Soc. 135 (2013) 13521-13530.
DOI URL |
[11] |
M. Tahir, L. Pan, F. Idrees, X.W. Zhang, L. Wang, J.J. Zou, Z.L. Wang, Nano Energy 37 (2017) 136-157.
DOI URL |
[12] |
L.H. Xie, D.K. Zhao, J.L. Dai, Z.X. Wu, L.G. Li, Catalysts 9 (2019) 458.
DOI URL |
[13] |
X. Zou, Y.P. Liu, G.D. Li, Y.Y. Wu, D.P. Liu, W. Li, H.W. Li, D.J. Wang, Y. Zhang, X.X. Zou, Adv. Mater. 29 (2017), 1700404.
DOI URL |
[14] |
L. An, J.R. Feng, Y. Zhang, R. Wang, H.W. Liu, G.C. Wang, F.Y. Cheng, P.X. Xi, Adv. Funct. Mater. 29 (2019), 1805298.
DOI URL |
[15] |
Z. Liu, J. Wang, C. Zhan, J. Yu, Y. Cao, J. Tu, C. Shi, J. Mater. Sci. Technol. 46 (2020) 177-184.
DOI URL |
[16] |
X.M. Li, X.G. Hao, A. Abudula, G.Q. Guan, J. Mater. Chem. A 4 (2016) 11973-12000.
DOI URL |
[17] |
C.C.L. McCrory S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137 (2015) 4347-4357.
DOI URL |
[18] |
V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Nat. Mater. 6 (2007) 241-247.
URL PMID |
[19] |
M.W. Kanan, D.G. Nocera, Science 321 (2008) 1072-1075.
DOI URL |
[20] |
S. Zhang, F. Lv, X.Y. Zhang, Y.L. Zhang, H.S. Zhu, H.H. Xing, Z.J. Mu, J. Li, S.J. Guo, E.K. Wang, Sci. China-Mater. 62 (2019) 1868-1876.
DOI URL |
[21] |
Y. Jia, L.Z. Zhang, G.P. Gao, H. Chen, B. Wang, J.Z. Zhou, M.T. Soo, M. Hong, X.C. Yan, G.R. Qian, J. Zou, A.J. Du, X.D. Yao, Adv. Mater. 29 (2017), 1700017.
DOI URL |
[22] |
Y.T. Qian, J. Du, D.J. Kang, Microporous Mesoporous Mater. 273 (2019) 148-155.
DOI URL |
[23] |
W.Y. Wang, L. Yang, F.L. Qu, Z. Liu, G. Du, A.M. Asiri, Y.D. Yao, L. Chen, X.P. Sun, J. Mater. Chem. A 5 (2017) 16585-16589.
DOI URL |
[24] |
M.B. Wu, Y. Liu, Y.L. Zhu, J. Lin, J.Y. Liu, H. Hu, Y. Wang, Q.S. Zhao, R.Q. Lv, J.S. Qiu, J. Mater. Chem. A 5 (2017) 11331-11339.
DOI URL |
[25] |
M.K. Bates, Q.Y. Jia, H. Doan, W.T. Liang, S. Mukerjee, ACS Catal. 6 (2016) 155-161.
DOI URL |
[26] |
Y. Cheng, S. Dou, M. Saunders, J. Zhang, J. Pan, S.Y. Wang, S.P. Jiang, J. Mater. Chem. A 4 (2016) 13881-13889.
DOI URL |
[27] |
X. He, W.T. Hong, C.Y. Jian, J. Li, Q. Cai, W. Liu, Int. J. Hydrog. Energy 44 (2019) 23066-23073.
DOI URL |
[28] |
A. Mendoza-Garcia, D. Su, S.H. Sun, Nanoscale 8 (2016) 3244-3247.
DOI URL PMID |
[29] |
H. Xu, J.J. Wei, K. Zhang, Y. Shiraish, Y.K. Du, ACS Appl. Mater. Interfaces 10 (2018) 29647-29655.
DOI URL |
[30] |
X.Y. Yu, Y. Feng, B.Y. Guan, X.W. Lou, U. Paik, Energy Environ. Sci. 9 (2016) 1246-1250.
DOI URL |
[31] |
S.C. Du, Z.Y. Ren, J. Zhang, J. Wu, W. Xi, J.Q. Zhu, H.G. Fu, Chem. Commun. 51 (2015) 8066-8069.
DOI URL |
[32] |
J.S. Li, S.L. Li, Y.J. Tang, M. Han, Z.H. Dai, J.C. Bao, Y.Q. Lan, Chem. Commun. 51 (2015) 2710-2713.
DOI URL |
[33] |
H. Li, S. Chen, X. Jia, B. Xu, X. Wang, Nat. Commun. 8 (2017) 15377.
DOI URL |
[34] |
H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 6 (2015) 7261.
DOI URL |
[35] |
Q.H. Lian, L.X. Zhong, C.F. Du, Y.B. Luo, J. Zhao, Y. Zheng, J.W. Xu, J.M. Ma, C.T. Liu, S.Z. Li, Q.Y. Yan, ACS Nano 13 (2019) 7975-7984.
DOI URL |
[36] |
T. Liu, A.R. Li, C.B. Wang, W. Zhou, S.J. Liu, L. Guo, Adv. Mater. 30 (2018), 1803590.
DOI URL |
[37] |
J.Q. Wang, Z. Liu, C.H. Zhan, K.X. Zhang, X.Y. Lai, J.C. Tu, Y. Cao, J. Mater. Sci. Technol. 39 (2020) 155-160.
DOI URL |
[38] |
J.H. Lin, Y.T. Yan, T.X. Xu, J. Cao, X.H. Zheng, J.C. Feng, J.L. Qi, J. Colloid Interface Sci. 564 (2020) 37-42.
DOI URL |
[39] |
Y. Yin, Y.M. Zhang, T.L. Gao, T. Yao, X.H. Zhang, J.C. Han, X.J. Wang, Z.H. Zhang, P. Xu, P. Zhang, X.Z. Cao, B. Song, S. Jin, Adv. Mater. 29 (2017), 1700311.
DOI URL |
[40] |
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R.H. Dong, S.H. Liu, X.D. Zhuang, X.L. Feng, Angew. Chem.-Int. Edit. 55 (2016) 6702-6707.
DOI URL |
[41] |
C.H. Zhan, Z.J. Yu, Z. Liu, Y. Chen, D.L. Chen, J.C. Tu, Q. Wu, X.L. Zhang, Y. Cao, Sci. China-Mater. 63 (2020) 1731-1740.
DOI URL |
[42] |
X. Liu, K. Ni, C.J. Niu, R.T. Guo, W. Xi, Z.Y. Wang, J.S. Meng, J.T. Li, Y.W. Zhu, P.J. Wu, Q. Li, J. Luo, X.J. Wu, L.Q. Mai, ACS Catal. 9 (2019) 2275-2285.
DOI URL |
[43] |
X. Liu, K. Ni, B. Wen, C.J. Niu, J.S. Meng, R.T. Guo, Q. Li, J.T. Li, Y.W. Zhu, X.J. Wu, D.Y. Zhao, L.Q. Mai, J. Mater. Chem. A 6 (2018) 17874-17881.
DOI URL |
[44] |
H.H. Wang, T. Liu, K. Bao, J. Cao, J.C. Feng, J.L. Qi, J. Colloid Interface Sci. 562 (2020) 363-369.
DOI URL |
[45] |
G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Adv. Mater. 32 (2020), 2000455.
DOI URL |
[46] |
D.D. Zhao, Y.C. Pi, Q. Shao, Y.G. Feng, Y. Zhang, X.Q. Huang, ACS Nano 12 (2018) 6245-6251.
DOI URL |
[47] |
Kresse Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
DOI URL |
[48] |
Kresse Hafner, Phys. Rev. B 49 (1994) 14251-14269.
DOI URL |
[49] | L. Zhang, X.Y. Wang, X.Q. Zheng, L.S. Peng, J.J. Shen, R. Xiang, Z.H. Deng, L. Li, H.M. Chen, Z.D. Wei, ACS Appl. Energ. Mater. 1 (2018) 5482-5489. |
[50] |
B. You, N. Jiang, M.L. Sheng, M.W. Bhushan, Y.J. Sun, ACS Catal. 6 (2016) 714-721.
DOI URL |
[51] |
P. Xiao, M.A. Sk, L. Thia, X.M. Ge, R.J. Lim, J.Y. Wang, K.H. Lim, X. Wang, Energy Environ. Sci. 7 (2014) 2624-2629.
DOI URL |
[52] |
H. Wen, L.Y. Gan, H.B. Dai, X.P. Wen, L.S. Wu, H. Wu, P. Wang, Appl. Catal. B-Environ. 241 (2019) 292-298.
DOI URL |
[53] |
K. Xiong, L.P. Huang, Y. Gao, H.D. Zhang, Y. Zhuo, H.Z. Shen, Y. Wang, L.S. Peng, Z.D. Wei, Electrochem. Commun. 92 (2018) 9-13.
DOI URL |
[54] |
R. Zhang, X.X. Wang, S.J. Yu, T. Wen, X.W. Zhu, F.X. Yang, X.N. Sun, X.K. Wang, W.P. Hu, Adv. Mater. 29 (2017), 1605502.
DOI URL |
[55] |
Y.S. Jin, X. Yue, C. Shu, S.L. Huang, P.K. Shen, J. Mater. Chem. A 5 (2017) 2508-2513.
DOI URL |
[56] |
J. Yang, F.J. Zhang, X. Wang, D.S. He, G. Wu, Q.H. Yang, X. Hong, Y. Wu, Y.D. Li, Angew. Chem.-Int. Edit. 55 (2016) 12854-12858.
DOI URL |
[57] |
A.R. Kucernak, C. Zalitis, J. Phys. Chem. C 120 (2016) 10721-10745.
DOI URL |
[58] |
Z. Liu, C.H. Zhan, L.K. Peng, Y. Cao, Y. Chen, S.J. Ding, C.H. Xiao, X.Y. Lai, J.W. Li, S.R. Wei, J.Q. Wang, J.C. Tu, J. Mater. Chem. A 7 (2019) 16761-16769.
DOI URL |
[59] |
S.Y. Zhang, G.W. She, S.Y. Li, F.M. Qu, L.X. Mu, W.S. Shi, Catal. Commun. 129 (2019), 105725.
DOI URL |
[60] |
X.D. Wang, H.Y. Chen, Y.F. Xu, J.F. Liao, B.X. Chen, H.S. Rao, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 5 (2017) 7191-7199.
DOI URL |
[61] |
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem.-Int. Edit. 54 (2015) 9351-9355.
DOI URL |
[62] |
F.M. Wang, J.W. Chen, X.P. Qi, H. Yang, H.H. Jiang, Y.Q. Deng, T.X. Liang, Appl. Surf. Sci. 481 (2019) 1403-1411.
DOI URL |
[63] |
L.A. Stern, L.G. Feng, F. Song, X.L. Hu, Energy Environ. Sci. 8 (2015) 2347-2351.
DOI URL |
[64] |
M. Ledendecker, S.K. Calderon, C. Papp, H.P. Steinruck, M. Antonietti, M. Shalom, Angew. Chem.-Int. Edit. 54 (2015) 12361-12365.
DOI URL |
[65] |
X.Y. Zhang, S. Zhang, J. Li, E.K. Wang, J. Mater. Chem. A 5 (2017) 22131-22136.
DOI URL |
[66] |
C.C. Du, M.X. Shang, J.X. Mao, W.B. Song, J. Mater. Chem. A 5 (2017) 15940-15949.
DOI URL |
[67] |
H.J. Zhang, X.P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Adv. Funct. Mater. 28 (2018), 1706847.
DOI URL |
[1] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[2] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[3] | Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 68(0): 191-198. |
[4] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[5] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[6] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[7] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[8] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[9] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
[10] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[11] | Wenbo Li, Qingfeng Hu, Yunwei Liu, Mengmeng Zhang, Jiajun Wang, Xiaopeng Han, Cheng Zhong, Wenbin Hu, Yida Deng. Powder metallurgy synthesis of porous Ni-Fe alloy for oxygen evolution reaction and overall water splitting [J]. J. Mater. Sci. Technol., 2020, 37(0): 154-160. |
[12] | Mir Ghasem Hosseini, Pariya Yardani Sefidi, Ahmet Musap Mert, Solen Kinayyigit. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline -WO3- MWCNT ternary nanocomposite [J]. J. Mater. Sci. Technol., 2020, 38(0): 7-18. |
[13] | Chaoyi Yan, Jianwen Huang, Chunyang Wu, Yaoyao Li, Yuchuan Tan, Luying Zhang, Yinghui Sun, Xiaona Huang, Jie Xiong. In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 42(0): 10-16. |
[14] | Shi Li, Luoyuan Ruan, Shanpeng Wang, Zhiyu Wang, Zhaohui Ren, Gaorong Han. Surface energy-driven solution epitaxial growth of anatase TiO2 homostructures for overall water splitting [J]. J. Mater. Sci. Technol., 2020, 46(0): 139-144. |
[15] | Seung Man Lim, Kyunglee Kang, Hongje Jang, Jung Tae Park. Environmental friendly synthesis of hierarchical mesoporous platinum nanoparticles templated by fucoidan biopolymer for enhanced hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2020, 46(0): 185-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||